Undervoltage/Overvoltage Lockout for VI-200/VI-J00 and Maxi, Mini, Micro Converters

Introduction

For many applications it is necessary to disable a DC-DC converter when its input voltage goes outside a specified range. This note describes circuits that can be used to disable a Vicor converter based on programmable undervoltage or overvoltage set points. These circuits operate as comparators that monitor the input voltage and disable the converter via the Gate IN / PC pin when the comparator trips. Configurable hysteresis is included in each circuit so that lockout will occur cleanly in the presence of noise.

Design Considerations

To disable a Vicor DC-DC converter the Gate IN / PC pin should be pulled low. The modules require a switch capable of sinking a minimum of 6mA for the VI-200 / VI-J00 converters and 3mA for Maxi, Mini, Micro converters. When Gate IN / PC is allowed to go high in the absence of a fault condition it will rise to about 6V.

VI-200 / VI-J00 modules are capable of turning on at very low input voltages, i.e., lower than the voltage at which they can operate correctly. This necessitates the use of a lockout circuit (Figure 1) for applications where the input voltage may drop below low line. Vicor’s Maxi, Mini, Micro modules have built-in undervoltage and overvoltage protection. For these converters the following circuits should be implemented if lockout is required inside the preexisting range of the converter.

All input sources have some noise that could cause glitching at the transition point if it was fed directly into a comparator. Using positive feedback to add hysteresis to the circuit cleans up the transitions. For example, Figure 2 shows how this hysteresis will affect lockout of the VI-JV0-CY module. The diagram shows a circuit configured for 4% hysteresis such that the converter cannot be enabled outside its normal operating range. Inside the hysteresis bands the status of Gate IN / PC will depend on whether the input voltage is going into or out of range.

The hysteresis voltage bands will ensure clean transitions if they are greater than the maximum possible peak-to-peak change in input voltage. Their widths should be chosen based on the maximum anticipated noise and ripple.
Figures 3 and 4 show startup and shutdown waveforms for a converter configured for the lockout voltages in Figure 2. Gate IN / PC shows clean transitions in spite of the slowly changing input.

For high-input voltage modules, care should be taken not to exceed either maximum power or maximum voltage ratings of the resistors. One way to achieve this is to replace a single resistor with a series of smaller resistors that share power and voltage.

Figure 2

Hysteresis Diagram

Figure 3

VI-JV0-CY with Input Rising from Undervoltage Lockout to Overvoltage Lockout

Figure 4

VI-JV0-CY with Input Falling from Overvoltage Lockout to Undervoltage Lockout
Resistor Values for VI-200 / VI-J00 Converters

Table 1 lists standard lockout voltages for VI-200 / VI-J00 family modules and resistor values. Use the formulas that follow for applications not listed.

<table>
<thead>
<tr>
<th>Input Des.</th>
<th>$V_{UV(off)}$ (V)</th>
<th>$V_{UV(on)}$ (V)</th>
<th>Max. V_{IN} (V)</th>
<th>R_1 (kΩ)</th>
<th>R_3 (kΩ)</th>
<th>R_5 (kΩ)</th>
<th>R_1 Rating (W)</th>
<th>R_3 Rating (W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0, V</td>
<td>10</td>
<td>10.4</td>
<td>40</td>
<td>3.65</td>
<td>73.2</td>
<td>806</td>
<td>1.00</td>
<td>0.25</td>
</tr>
<tr>
<td>1, 2*</td>
<td>18</td>
<td>18.72</td>
<td>60</td>
<td>3.65</td>
<td>165.0</td>
<td>866</td>
<td>1.00</td>
<td>0.25</td>
</tr>
<tr>
<td>N, 3*</td>
<td>36</td>
<td>37.44</td>
<td>84</td>
<td>23.70</td>
<td>294.0</td>
<td>887</td>
<td>0.50</td>
<td>0.25</td>
</tr>
<tr>
<td>3</td>
<td>42</td>
<td>43.68</td>
<td>72</td>
<td>30.10</td>
<td>340.0</td>
<td>887</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>4*</td>
<td>45</td>
<td>46.8</td>
<td>110</td>
<td>34.00</td>
<td>365.0</td>
<td>887</td>
<td>0.50</td>
<td>0.25</td>
</tr>
<tr>
<td>4</td>
<td>55</td>
<td>57.2</td>
<td>110</td>
<td>45.30</td>
<td>453.0</td>
<td>887</td>
<td>0.50</td>
<td>0.25</td>
</tr>
<tr>
<td>T</td>
<td>66</td>
<td>68.64</td>
<td>176</td>
<td>57.60</td>
<td>549.0</td>
<td>887</td>
<td>1.00</td>
<td>0.25</td>
</tr>
<tr>
<td>5*</td>
<td>85</td>
<td>88.4</td>
<td>215</td>
<td>78.70</td>
<td>698.0</td>
<td>909</td>
<td>1.00</td>
<td>0.25</td>
</tr>
<tr>
<td>5, 7</td>
<td>100</td>
<td>104</td>
<td>413</td>
<td>95.30</td>
<td>825.0</td>
<td>909</td>
<td>3.00</td>
<td>0.50</td>
</tr>
<tr>
<td>6*</td>
<td>170</td>
<td>176.8</td>
<td>425</td>
<td>174.00</td>
<td>1430.0</td>
<td>909</td>
<td>1.50</td>
<td>0.25</td>
</tr>
<tr>
<td>6</td>
<td>200</td>
<td>208</td>
<td>425</td>
<td>205.00</td>
<td>1650.0</td>
<td>909</td>
<td>1.50</td>
<td>0.25</td>
</tr>
</tbody>
</table>

Notes:
1. *Voltage ranges that allow the converter to support 75% load (brown out).
2. Hysteresis is set at 4%.
3. All resistors are 0.25 W unless otherwise specified.
Circuit Operation

As the input voltage ramps up, R_1 feeds the base of Q_1 through zener Z_1. This turns Q_1 on, which pulls the Gate IN / PC pin low and disables the module.

Q_1 remains on until the input voltage scaled by R_3 and R_4 reaches 1.24V, the reference voltage of U_1 (TLV431). When this occurs, U_1 shunts current from the cathode of Z_1 and pulls this point down to about 1V. This in turn pulls the base of Q_1 low forcing it into cutoff and enabling the module. R_2 prevents Z_1 leakage from pulling Q_1 out of cutoff.

When the Gate IN / PC pin goes high, the feedback resistor (R_5) pulls up the reference of U_1 thereby adding hysteresis to the circuit. D_1 disables the feedback when Gate IN / PC is low.

C_1 acts as a low-pass filter with a 20kHz bandwidth that decouples high-frequency noise from the reference of U_1.

Formulas for Customized UV Lockout Voltages and Maxi, Mini, Micro Converters

Solving For R_1

R_1 should be selected so that the base of Q_1 is fed enough current to saturate it but not more than U_1 is capable of sinking. Assuming R_2 is large enough to be neglected and the worst case Beta of Q_1 is 20, then R_1 should provide at least 0.3mA to sink 6mA from Gate IN / PC. This leads to the following formula for R_1:

$$R_1 = \frac{V_{IN(min)} - 4.9V}{0.3mA}$$

Where:

$V_{IN(min)}$ is the minimum voltage at which the converter should be disabled, typically 6V or one third the converter’s minimum input voltage whichever is greater.

At high line the current though R_1 is then:

$$I_{R1(HL)} = \frac{V_{HL} - 1V}{R_1}$$

Where:

V_{HL} is the maximum operating voltage of the module.

$IR_{1(HL)}$ should not exceed the 15mA limit of U_1. Power dissipation is governed by the following formula:

$$P_{R1} = \left(\frac{V_{IN(max)} - 1V}{R_1}\right)^2$$

Where:

$V_{IN(max)}$ is the maximum input voltage the circuit can withstand.

Solving For R_3

A good starting value for R_4 is 10kΩ. With the value of R_4 known, R_3 can be calculated as follows:

$$R_3 = R_4 \left(\frac{V_{UV(on)}}{1.24V} - 1\right)$$

Where:

$V_{UV(on)}$ is the voltage at which the module is enabled as the input voltage transitions low to high (See Figure 2). The power dissipated in R_3 can be calculated using the formula below:

$$P_{R3} = \left(\frac{V_{IN(max)}}{R_3 + R_4}\right)^2 R_3$$
Solving For R_5

R_5 should be set to add the proper amount of hysteresis to the circuit based on input noise. It can be calculated using this formula:

$$R_5 = \frac{(4.36V) \cdot R_3 \cdot R_4}{I_{24V} \cdot (R_3 + R_4) - V_{UV(\text{off})} \cdot R_4}$$

Where:

$V_{UV(\text{off})}$ is the voltage at which the module is disabled as the input voltage transitions high to low (See Figure 2).

Overvoltage Lockout

Figure 6 shows the overvoltage lockout circuit schematic.

Reference designations are continued from the undervoltage lockout schematic of Figure 5 so that the circuits can be cascaded without confusion.

![Overvoltage Lockout Circuit Schematic](image)

Resistor Values for VI-200/VI-J00 Converters

Table 2 lists common lockout voltages for VI-200 / VI-J00 family modules and resistor values. Use the formulas that follow for applications not listed.

<table>
<thead>
<tr>
<th>Input Des.</th>
<th>$V_{OV(\text{off})}$ (V)</th>
<th>$V_{OV(\text{on})}$ (V)</th>
<th>Max. V_{IN} (V)</th>
<th>R_6 (kΩ)</th>
<th>R_8 (kΩ)</th>
<th>R_{13} (kΩ)</th>
<th>R_{13} Rating (W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>20</td>
<td>19.2</td>
<td>22</td>
<td>150</td>
<td>715</td>
<td>2.87</td>
<td>0.25</td>
</tr>
<tr>
<td>1</td>
<td>32</td>
<td>30.72</td>
<td>36</td>
<td>249</td>
<td>732</td>
<td>5.23</td>
<td>0.25</td>
</tr>
<tr>
<td>V, W</td>
<td>36</td>
<td>34.56</td>
<td>40</td>
<td>280</td>
<td>732</td>
<td>6.04</td>
<td>0.25</td>
</tr>
<tr>
<td>2</td>
<td>56</td>
<td>53.76</td>
<td>60</td>
<td>442</td>
<td>750</td>
<td>10.00</td>
<td>0.50</td>
</tr>
<tr>
<td>3</td>
<td>60</td>
<td>57.6</td>
<td>72</td>
<td>475</td>
<td>750</td>
<td>11.00</td>
<td>1.00</td>
</tr>
<tr>
<td>N</td>
<td>76</td>
<td>72.96</td>
<td>84</td>
<td>604</td>
<td>750</td>
<td>14.00</td>
<td>1.00</td>
</tr>
<tr>
<td>4</td>
<td>100</td>
<td>96</td>
<td>110</td>
<td>787</td>
<td>750</td>
<td>18.70</td>
<td>1.00</td>
</tr>
<tr>
<td>T</td>
<td>160</td>
<td>153.6</td>
<td>167</td>
<td>1270</td>
<td>750</td>
<td>30.90</td>
<td>1.50</td>
</tr>
<tr>
<td>5</td>
<td>200</td>
<td>192</td>
<td>215</td>
<td>1620</td>
<td>750</td>
<td>39.20</td>
<td>1.50</td>
</tr>
<tr>
<td>7</td>
<td>375</td>
<td>360</td>
<td>413</td>
<td>3010</td>
<td>750</td>
<td>73.20</td>
<td>3.00</td>
</tr>
<tr>
<td>6</td>
<td>400</td>
<td>384</td>
<td>425</td>
<td>3240</td>
<td>750</td>
<td>78.70</td>
<td>3.00</td>
</tr>
</tbody>
</table>

Notes:

1. Hysteresis is set at 4%.
2. All resistors are 0.25W unless otherwise specified.
Circuit Operation

When the input voltage transitions high, a 5.6V source is established by \(Z_2 \) at the emitter of \(Q_3 \). For voltages less than lockout, \(Q_3 \) is in cutoff since \(U_2 \) conducts minimal cathode current. Thus, \(Q_3 \) passes negligible current to the base of \(Q_2 \) cutting \(Q_2 \) off and allowing Gate IN / PC to go high.

When the input voltage as scaled by \(R_6 \) and \(R_7 \) increases above the reference of \(U_2 \), \(U_2 \) will pull the base of \(Q_2 \) low through \(R_{12} \). As \(Q_2 \) turns on, current flows into the base of \(Q_2 \) through \(R_6 \) causing it to conduct and pull Gate IN / PC low, thereby disabling the module.

\(R_8 \) adds positive feedback by coupling \(Q_3 \)'s collector to the reference of \(U_2 \). \(D_2 \) disables the feedback when Gate IN / PC is high.

\(C_2 \) acts as a low-pass filter with a 20kHz bandwidth that decouples high-frequency noise from the reference of \(U_2 \).

Formulas for Customized OV Lockout Voltages and Maxi, Mini, Micro Converters

Solving For \(R_6 \)

A good starting value for \(R_7 \) is 10k\(\Omega \). With the value of \(R_7 \) known \(R_6 \) can be calculated as follows:

\[
R_6 = R_7 \left(\frac{V_{OV(off)}}{1.24V} - 1 \right)
\]

Where:
\(V_{OV(off)} \) is the voltage at which the module is disabled as the input voltage transitions low to high (See Figure 2).

Dissipation in \(R_6 \) can be calculated using the formula below:

\[
P_{R6} = \left(\frac{V_{IN(max)}}{R_6 + R_7} \right)^2 R_6
\]

Where:
\(V_{IN(max)} \) is the maximum input voltage the circuit can withstand.

Solving For \(R_8 \)

The feedback resistor \(R_8 \) can be calculated using the formula below:

\[
R_8 = \frac{(3.76V) R_6 R_7}{1.24V (R_6 + R_7) - V_{OV(on)} R_7}
\]

Where:
\(V_{OV(on)} \) is the voltage at which the module is enabled as the input voltage transitions high to low (See Figure 2).
Solving For R_{13}

The value of R_{13} should be chosen so that the current through Z_2 is about 5mA at the overvoltage lockout point. It can be set using this formula:

$$R_{13} = \frac{V_{ovloff} - 5.6V}{5mA}$$

Power dissipation can be calculated as given below:

$$P_{R_{13}} = \frac{(V_{IN(min)} - 5.6V)^2}{R_{13}}$$

Undervoltage / Overvoltage Lockout

Circuit Description / Operation

The circuit in Figure 7 combines the undervoltage and overvoltage circuits. When an overvoltage event occurs the second regulator (U_2) shunts the reference of U_1 forcing it to disable the module. R_9 is added to provide current to the cathode of U_2 when it is off so that D_3 can isolate it from the undervoltage circuit’s divider. Z_2 acts as a clamp to prevent damage to U_2. For detailed circuit operation please refer to the individual circuit descriptions.

Figure 7
Undervoltage / Overvoltage Lockout Circuit Schematic
Resistor Values for VI-200/VI-J00 Converters

Table 3 lists common lockout voltages for VI-200/VI-J00 family modules and resistor values. Use the formulas that follow for applications not listed.

Notes:
1. * Voltage ranges that allow the converter to support 75% load (brown out).
2. Hysteresis is set at 4% of the respective lockout voltages.
3. All resistors are 0.25W unless otherwise specified.

<table>
<thead>
<tr>
<th>Input Des.</th>
<th>V_{UV}\text{(off)} (V)</th>
<th>V_{UV}\text{(on)} (V)</th>
<th>V_{OV}\text{(off)} (V)</th>
<th>V_{OV}\text{(on)} (V)</th>
<th>Max. V_{IN} (V)</th>
<th>R_{1} (k\Omega)</th>
<th>R_{3} (k\Omega)</th>
<th>R_{5} (k\Omega)</th>
<th>R_{6} (k\Omega)</th>
<th>R_{9} (k\Omega)</th>
<th>R_{11} Rating (W)</th>
<th>R_{3} Rating (W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>10</td>
<td>10.4</td>
<td>19.2</td>
<td>20</td>
<td>22</td>
<td>3.65</td>
<td>66.5</td>
<td>806</td>
<td>150</td>
<td>715</td>
<td>44.2</td>
<td>0.25</td>
</tr>
<tr>
<td>V</td>
<td>10</td>
<td>10.4</td>
<td>34.56</td>
<td>36</td>
<td>40</td>
<td>3.65</td>
<td>66.5</td>
<td>806</td>
<td>280</td>
<td>732</td>
<td>154.0</td>
<td>0.50</td>
</tr>
<tr>
<td>1</td>
<td>21</td>
<td>21.84</td>
<td>30.72</td>
<td>32</td>
<td>36</td>
<td>6.98</td>
<td>158.0</td>
<td>866</td>
<td>249</td>
<td>732</td>
<td>142.0</td>
<td>0.25</td>
</tr>
<tr>
<td>1*</td>
<td>18</td>
<td>18.72</td>
<td>30.72</td>
<td>32</td>
<td>36</td>
<td>3.65</td>
<td>133.0</td>
<td>845</td>
<td>249</td>
<td>732</td>
<td>124.0</td>
<td>0.50</td>
</tr>
<tr>
<td>W</td>
<td>18</td>
<td>18.72</td>
<td>34.56</td>
<td>36</td>
<td>40</td>
<td>3.65</td>
<td>133.0</td>
<td>845</td>
<td>280</td>
<td>732</td>
<td>124.0</td>
<td>0.50</td>
</tr>
<tr>
<td>2</td>
<td>21</td>
<td>21.84</td>
<td>53.76</td>
<td>56</td>
<td>60</td>
<td>6.98</td>
<td>158.0</td>
<td>866</td>
<td>442</td>
<td>750</td>
<td>154.0</td>
<td>1.00</td>
</tr>
<tr>
<td>2*</td>
<td>18</td>
<td>18.72</td>
<td>53.76</td>
<td>56</td>
<td>60</td>
<td>3.65</td>
<td>133.0</td>
<td>845</td>
<td>442</td>
<td>750</td>
<td>124.0</td>
<td>1.50</td>
</tr>
<tr>
<td>3</td>
<td>42</td>
<td>43.68</td>
<td>57.6</td>
<td>60</td>
<td>72</td>
<td>30.10</td>
<td>332.0</td>
<td>887</td>
<td>475</td>
<td>750</td>
<td>365.0</td>
<td>0.25</td>
</tr>
<tr>
<td>3*</td>
<td>36</td>
<td>37.44</td>
<td>57.6</td>
<td>60</td>
<td>72</td>
<td>23.70</td>
<td>287.0</td>
<td>887</td>
<td>475</td>
<td>750</td>
<td>301.0</td>
<td>0.25</td>
</tr>
<tr>
<td>N</td>
<td>36</td>
<td>37.44</td>
<td>72.96</td>
<td>76</td>
<td>84</td>
<td>23.70</td>
<td>287.0</td>
<td>887</td>
<td>604</td>
<td>750</td>
<td>301.0</td>
<td>0.50</td>
</tr>
<tr>
<td>4</td>
<td>55</td>
<td>57.2</td>
<td>96</td>
<td>100</td>
<td>110</td>
<td>45.30</td>
<td>442.0</td>
<td>887</td>
<td>787</td>
<td>750</td>
<td>499.0</td>
<td>0.50</td>
</tr>
<tr>
<td>4*</td>
<td>45</td>
<td>46.8</td>
<td>96</td>
<td>100</td>
<td>110</td>
<td>34.00</td>
<td>357.0</td>
<td>887</td>
<td>787</td>
<td>750</td>
<td>392.0</td>
<td>0.50</td>
</tr>
<tr>
<td>T</td>
<td>66</td>
<td>68.64</td>
<td>153.6</td>
<td>160</td>
<td>176</td>
<td>57.60</td>
<td>536.0</td>
<td>887</td>
<td>1270</td>
<td>750</td>
<td>604.0</td>
<td>1.00</td>
</tr>
<tr>
<td>5</td>
<td>100</td>
<td>104</td>
<td>192</td>
<td>200</td>
<td>215</td>
<td>95.30</td>
<td>825.0</td>
<td>909</td>
<td>1620</td>
<td>750</td>
<td>953.0</td>
<td>1.00</td>
</tr>
<tr>
<td>5*</td>
<td>85</td>
<td>88.4</td>
<td>192</td>
<td>200</td>
<td>215</td>
<td>78.70</td>
<td>698.0</td>
<td>909</td>
<td>1620</td>
<td>750</td>
<td>787.0</td>
<td>1.00</td>
</tr>
<tr>
<td>6</td>
<td>200</td>
<td>208</td>
<td>384</td>
<td>400</td>
<td>425</td>
<td>205.00</td>
<td>1650.0</td>
<td>909</td>
<td>3240</td>
<td>750</td>
<td>1960.0</td>
<td>1.50</td>
</tr>
<tr>
<td>6*</td>
<td>170</td>
<td>176.8</td>
<td>384</td>
<td>400</td>
<td>425</td>
<td>174.00</td>
<td>1400.0</td>
<td>909</td>
<td>3240</td>
<td>750</td>
<td>1650.0</td>
<td>1.50</td>
</tr>
<tr>
<td>7</td>
<td>100</td>
<td>104</td>
<td>360</td>
<td>375</td>
<td>413</td>
<td>95.3</td>
<td>825.0</td>
<td>909</td>
<td>3010</td>
<td>750</td>
<td>953.0</td>
<td>3.00</td>
</tr>
</tbody>
</table>
Formulas for Customized UV/OV Lockout Voltages and Maxi, Mini, Micro Converters

For this circuit, the zener voltages have been selected such that most of the resistor values need not be recalculated. With the exception of \(R_3, R_5 \) and \(R_9 \), resistor values can be found by using the equivalent resistors calculated for the stand-alone undervoltage and overvoltage circuits.

Solving For \(R_3 \)

The formula below gives the value of \(R_3 \):

\[
R_3 = R_3 \left(\frac{V_{UV(on)} - 1.24V}{1.24V} - 1 \right) - 8.06k\Omega
\]

The power dissipated in \(R_3 \) can be calculated using the formula below:

\[
P_{R_3} = \frac{(V_{(max)} - 1.7V)^2}{R_3}
\]

Solving For \(R_5 \)

\(R_5 \) adds the proper amount of hysteresis to the circuit based on input noise. \(R_5 \) can be calculated as follows:

\[
R_5 = \frac{4.36V (R_3 + R_1) R_3}{1.24V (R_3 + R_4 + R_{10}) V_{UV(off)} R_4}
\]

Solving For \(R_9 \)

The value of \(R_9 \) can be calculated as follows:

\[
R_9 = \frac{V_{UV(off)} - 5.6V}{100\mu A}
\]
Limitation of Warranties

Information in this document is believed to be accurate and reliable. HOWEVER, THIS INFORMATION IS PROVIDED “AS IS” AND WITHOUT ANY WARRANTIES, EXPRESSED OR IMPLIED, AS TO THE ACCURACY OR COMPLETENESS OF SUCH INFORMATION. VICOR SHALL HAVE NO LIABILITY FOR THE CONSEQUENCES OF USE OF SUCH INFORMATION. IN NO EVENT SHALL VICOR BE LIABLE FOR ANY INDIRECT, INCIDENTAL, PUNITIVE, SPECIAL OR CONSEQUENTIAL DAMAGES (INCLUDING, WITHOUT LIMITATION, LOST PROFITS OR SAVINGS, BUSINESS INTERRUPTION, COSTS RELATED TO THE REMOVAL OR REPLACEMENT OF ANY PRODUCTS OR REWORK CHARGES).

Vicor reserves the right to make changes to information published in this document, at any time and without notice. You should verify that this document and information is current. This document supersedes and replaces all prior versions of this publication.

All guidance and content herein are for illustrative purposes only. Vicor makes no representation or warranty that the products and/or services described herein will be suitable for the specified use without further testing or modification. You are responsible for the design and operation of your applications and products using Vicor products, and Vicor accepts no liability for any assistance with applications or customer product design. It is your sole responsibility to determine whether the Vicor product is suitable and fit for your applications and products, and to implement adequate design, testing and operating safeguards for your planned application(s) and use(s).

VICOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED OR WARRANTED FOR USE IN LIFE SUPPORT, LIFE-CRITICAL OR SAFETY-CRITICAL SYSTEMS OR EQUIPMENT. VICOR PRODUCTS ARE NOT CERTIFIED TO MEET ISO 13485 FOR USE IN MEDICAL EQUIPMENT NOR ISO/TS16949 FOR USE IN AUTOMOTIVE APPLICATIONS OR OTHER SIMILAR MEDICAL AND AUTOMOTIVE STANDARDS. VICOR DISCLAIMS ANY AND ALL LIABILITY FOR INCLUSION AND/OR USE OF VICOR PRODUCTS IN SUCH EQUIPMENT OR APPLICATIONS AND THEREFORE SUCH INCLUSION AND/OR USE IS AT YOUR OWN RISK.

Terms of Sale

The purchase and sale of Vicor products is subject to the Vicor Corporation Terms and Conditions of Sale which are available at: http://www.vicorpower.com/termsconditions warranty

Export Control

This document as well as the item(s) described herein may be subject to export control regulations. Export may require a prior authorization from U.S. export authorities.

Contact Us: http://www.vicorpower.com/contact-us

Vicor Corporation
25 Frontage Road
Andover, MA, USA 01810
Tel: 800-735-6200
Fax: 978-475-6715
www.vicorpower.com

email
Customer Service: custserv@vicorpower.com
Technical Support: apps@vicorpower.com

©2017 Vicor Corporation. All rights reserved. The Vicor name is a registered trademark of Vicor Corporation. All other trademarks, product names, logos and brands are property of their respective owners.