Features & Benefits
- RoHS compliant (VE versions)
- Inputs: 10 to 400V
- Any output, 1 to 95V
- cULus, cTÜVus, CE Marked
- 80 – 90% Efficiency (Typical)
- Up to 27 W/in³

2 Up:
- 2.58” x 2.5” x 0.62” (Junior)
- 4.9” x 2.5” x 0.62” (Full Size)

3 Up:
- 2.58” x 7.3” x 0.62” (Junior)
- 4.9” x 7.3” x 0.62” (Full Size)

Low noise ZCS power architecture
- Booster versions available for expanded output power – full size only (add B to part number Example: VI-LBxx-xx)

Product Highlights
Vicor’s MegaMod and MegaMod Jr. Families of single, dual and triple output DC-DC converters provide power system designers with cost effective, high performance, off-the-shelf solutions to applications that might otherwise require a custom supply.

Incorporating standard VI-200 or VI-100 Family converters in rugged, chassis mount packages, MegaMod and MegaMod Jr.’s can be ordered with single, dual or triple outputs, having a combined output power of up to 600W. Totally isolated outputs eliminate efficiency penalties and output interaction problems.

For on-line product configuration visit:
MegaMod / MI-MegaMod DC-DC Converters Configurator

Configuration Chart

<table>
<thead>
<tr>
<th>Input Voltage</th>
<th>Maximum Power</th>
<th>Low Line</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal</td>
<td>Input Range</td>
<td>MegaMod</td>
</tr>
<tr>
<td></td>
<td>Full Power</td>
<td></td>
</tr>
<tr>
<td>0 = 12V</td>
<td>10 – 20V</td>
<td>4</td>
</tr>
<tr>
<td>V = 24V</td>
<td>10 – 36V</td>
<td>2</td>
</tr>
<tr>
<td>1 = 24V</td>
<td>21 – 32V</td>
<td>8</td>
</tr>
<tr>
<td>W = 24V</td>
<td>18 – 36V</td>
<td>8</td>
</tr>
<tr>
<td>2 = 36V</td>
<td>21 – 66V</td>
<td>8</td>
</tr>
<tr>
<td>3 = 48V</td>
<td>42 – 80V</td>
<td>10</td>
</tr>
<tr>
<td>N = 48V</td>
<td>36 – 76V</td>
<td>10</td>
</tr>
<tr>
<td>Q = 72V</td>
<td>55 – 100V</td>
<td>9</td>
</tr>
<tr>
<td>T = 110V</td>
<td>66 – 160V</td>
<td>9</td>
</tr>
<tr>
<td>5 = 150V</td>
<td>100 – 200V</td>
<td>9</td>
</tr>
<tr>
<td>6 = 300V</td>
<td>200 – 400V</td>
<td>10</td>
</tr>
<tr>
<td>7 = 500V</td>
<td>300 – 600V</td>
<td>5</td>
</tr>
</tbody>
</table>

Max. Output Per Module
- 5 – 7.5V Outputs
- >7.5V Outputs
- <5V Outputs

(1) 50W	75W	10A
(2) 100W	75W	15A
(4) 75W	75W	15A
(5) 75W	100W	20A
(6) 100W	100W	20A
(7) 100W	150W	30A
(8) 150W	150W	30A
(9) 150W	200W	40A
(10) 200W	200W	40A
(11) 50W	50W	10A

Product Grade Temperature (°C)

<table>
<thead>
<tr>
<th>MegaMod</th>
<th>MegaMod Jr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>E = -10 to +85</td>
<td>-10 to +100</td>
</tr>
<tr>
<td>C = -25 to +85</td>
<td>-25 to +100</td>
</tr>
<tr>
<td>I = -40 to +85</td>
<td>-40 to +100</td>
</tr>
<tr>
<td>M = -55 to +85</td>
<td>-55 to +100</td>
</tr>
</tbody>
</table>

Output Power/Current

<table>
<thead>
<tr>
<th>VOUT > 5V</th>
<th>VOUT = 5V</th>
<th>VOUT < 5V</th>
</tr>
</thead>
<tbody>
<tr>
<td>W = 100W</td>
<td>W = 20A</td>
<td>W = 10A</td>
</tr>
<tr>
<td>V = 150W</td>
<td>V = 20A</td>
<td>V = 10A</td>
</tr>
<tr>
<td>U = 200W</td>
<td>U = 40A</td>
<td>U = 20A</td>
</tr>
<tr>
<td>S = 300W</td>
<td>S = 60A</td>
<td>S = 40A</td>
</tr>
<tr>
<td>Q = 400W</td>
<td>Q = 80A</td>
<td>Q = 80A</td>
</tr>
</tbody>
</table>

Output Power/Current

<table>
<thead>
<tr>
<th>VOUT > 5V</th>
<th>VOUT < 5V</th>
</tr>
</thead>
<tbody>
<tr>
<td>W = 100W</td>
<td>W = 20A</td>
</tr>
<tr>
<td>V = 150W</td>
<td>V = 20A</td>
</tr>
<tr>
<td>U = 200W</td>
<td>U = 40A</td>
</tr>
<tr>
<td>S = 300W</td>
<td>S = 60A</td>
</tr>
<tr>
<td>Q = 400W</td>
<td>Q = 80A</td>
</tr>
</tbody>
</table>

Note: 25 to 600 Watts DC-DC Converters Single, Dual, Triple Output Chassis Mount
MegaMod Specifications

(typical at $T_{BP} = 25^\circ C$, nominal line, 75% load, unless otherwise specified)

INPUT SPECIFICATIONS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>MegaMod (E-Grade)</th>
<th></th>
<th></th>
<th>MegaMod (C-, I-, M-Grade)</th>
<th></th>
<th></th>
<th>Test Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inrush charge</td>
<td>120×10^{-6}</td>
<td>120×10^{-6}</td>
<td>200×10^{-6}</td>
<td>Coulombs</td>
<td>Nom. line, per module</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input reflected ripple current – pp</td>
<td>$10%$</td>
<td>$10%$</td>
<td>l_n</td>
<td>full load</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input ripple rejection</td>
<td>$25 + 20 \log \left(\frac{V_{IN}}{V_{OUT}} \right)$</td>
<td>$30 + 20 \log \left(\frac{V_{IN}}{V_{OUT}} \right)$</td>
<td>dB</td>
<td>120Hz, nom. line</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No load power dissipation</td>
<td>1.35</td>
<td>2</td>
<td>1.35</td>
<td>2</td>
<td>Watts</td>
<td>Per module</td>
<td></td>
</tr>
</tbody>
</table>

OUTPUT SPECIFICATIONS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>MegaMod (E-Grade)</th>
<th></th>
<th></th>
<th>MegaMod (C-, I-, M-Grade)</th>
<th></th>
<th></th>
<th>Test Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Setpoint accuracy</td>
<td>$1%$</td>
<td>$2%$</td>
<td>$0.5%$</td>
<td>$1%$</td>
<td>V_{NOM}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Load / line regulation</td>
<td>$0.5%$</td>
<td>$0.2%$</td>
<td>$0.5%$</td>
<td>V_{NOM}</td>
<td>LL to HL, 10% to FL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output ripple - pp</td>
<td>$2V, 3.3V$</td>
<td>60</td>
<td>100</td>
<td>mV</td>
<td>20MHz bandwidth</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output voltage trimming$[^a]$</td>
<td>$5%$</td>
<td>$2%$</td>
<td>$3%$</td>
<td>V_{NOM}</td>
<td>20MHz bandwidth</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output voltage trimming$[^a]$</td>
<td>$10 - 95V$</td>
<td>$3%$</td>
<td>$0.75%$</td>
<td>$1.5%$</td>
<td>V_{NOM}</td>
<td>20MHz bandwidth</td>
<td></td>
</tr>
<tr>
<td>Total remote sense compensation</td>
<td>0.5</td>
<td>0.5</td>
<td>V_{NOM}</td>
<td>Volts</td>
<td>0.25V max. neg. leg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OVP setpoint$[^b]$</td>
<td>$125%$</td>
<td>$115%$</td>
<td>$125%$</td>
<td>$135%$</td>
<td>V_{NOM}</td>
<td>Recycle power</td>
<td></td>
</tr>
<tr>
<td>Current limit</td>
<td>$105%$</td>
<td>$135%$</td>
<td>$125%$</td>
<td>$130%$</td>
<td>I_{NOM}</td>
<td>Automatic restart</td>
<td></td>
</tr>
<tr>
<td>Short circuit current$[^c]$</td>
<td>$20%$</td>
<td>$140%$</td>
<td>$20%$</td>
<td>$130%$</td>
<td>I_{NOM}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[^a]: 10V to 15V outputs, or “V” input range have standard trim range ±10%. Consult factory for wider trim range. 95V output -50 + 0% trim range.

[^b]: 131% typical for booster modules.

[^c]: Output voltages of 5V or less incorporate foldback current limiting; outputs of 10V and above contain straight-line limiting.

CONTROL PIN SPECIFICATIONS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>MegaMod (E-Grade)</th>
<th></th>
<th></th>
<th>MegaMod (C-, I-, M-Grade)</th>
<th></th>
<th></th>
<th>Test Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gate out impedance</td>
<td>50</td>
<td>50</td>
<td>Ohms</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gate in impedance</td>
<td>10^3</td>
<td>10^3</td>
<td>Ohms</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gate in open circuit voltage</td>
<td>6</td>
<td>6</td>
<td>Volts</td>
<td>Use open collector</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gate in low threshold</td>
<td>0.65</td>
<td>0.65</td>
<td>Volts</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gate in low current</td>
<td>6</td>
<td>6</td>
<td>mA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power sharing accuracy</td>
<td>0.95</td>
<td>1.05</td>
<td>0.95</td>
<td>1.05</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MegaMod Specifications (Cont.)

DIELECTRIC WITHSTAND CHARACTERISTICS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>MegaMod (E-Grade)</th>
<th>MegaMod (C-, I-, M-Grade)</th>
<th>Unit</th>
<th>Test Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input to output</td>
<td>3,000</td>
<td>3,000</td>
<td>V_{RMS}</td>
<td>Baseplate earthed</td>
</tr>
<tr>
<td>Output to baseplate</td>
<td>500</td>
<td>500</td>
<td>V_{RMS}</td>
<td>Baseplate (Cool and recycle power to restart)</td>
</tr>
<tr>
<td>Input to baseplate</td>
<td>1,500</td>
<td>1,500</td>
<td>V_{RMS}</td>
<td>Baseplate (Cool and recycle power to restart)</td>
</tr>
</tbody>
</table>

THERMAL CHARACTERISTICS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>MegaMod (E-Grade)</th>
<th>MegaMod (C-, I-, M-Grade)</th>
<th>Units</th>
<th>Test Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efficiency</td>
<td>78-88%</td>
<td>80 – 90%</td>
<td>°C/Watt</td>
<td>Baseplate earthed</td>
</tr>
<tr>
<td>Baseplate to chassis</td>
<td>0.1</td>
<td>0.1</td>
<td>°C/Watt</td>
<td>Baseplate (Cool and recycle power to restart)</td>
</tr>
<tr>
<td>Thermal Shutdown</td>
<td>90 95 105</td>
<td>90 95 105</td>
<td>°C</td>
<td>Baseplate (Cool and recycle power to restart)</td>
</tr>
</tbody>
</table>

MECHANICAL SPECIFICATIONS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>MegaMod (E-Grade)</th>
<th>MegaMod (C-, I-, M-Grade)</th>
<th>Units</th>
<th>Test Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Up</td>
<td>9.0 (255)</td>
<td>9.0 (255)</td>
<td>Ounces (Grams)</td>
<td></td>
</tr>
<tr>
<td>2 Up</td>
<td>1.2 (545)</td>
<td>1.2 (545)</td>
<td>Lbs. (Grams)</td>
<td></td>
</tr>
<tr>
<td>3 Up</td>
<td>1.7 (772)</td>
<td>1.7 (772)</td>
<td>Lbs. (Grams)</td>
<td></td>
</tr>
</tbody>
</table>
MegaMod Jr. Specifications

(typical at \(T_{BP} = 25^\circ C \), nominal line, 75% load, unless otherwise specified)

INPUT SPECIFICATIONS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>MegaMod Jr. (E-Grade)</th>
<th>MegaMod Jr. (C-, I-, M-Grade)</th>
<th>Unit</th>
<th>Test Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inrush charge</td>
<td>(60 \times 10^6)</td>
<td>(60 \times 10^6)</td>
<td>Coulombs</td>
<td>Nom. line, per module</td>
</tr>
<tr>
<td>Input reflected ripple current — pp</td>
<td>(10%)</td>
<td>(10%)</td>
<td>(I_n)</td>
<td>Nom. line, full load</td>
</tr>
<tr>
<td>Input ripple rejection</td>
<td>(25 + 20 \log \left(\frac{V_{IN}}{V_{OUT}} \right))</td>
<td>(30 + 20 \log \left(\frac{V_{IN}}{V_{OUT}} \right))</td>
<td>dB</td>
<td>120Hz, nom. line</td>
</tr>
<tr>
<td>No load power dissipation</td>
<td>(1.35)</td>
<td>(1.35)</td>
<td>Watts</td>
<td>Per module</td>
</tr>
</tbody>
</table>

OUTPUT SPECIFICATIONS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>MegaMod Jr. (E-Grade)</th>
<th>MegaMod Jr. (C-, I-, M-Grade)</th>
<th>Units</th>
<th>Test Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Setpoint accuracy</td>
<td>(1.0%)</td>
<td>(0.5%)</td>
<td>(V_{NOM})</td>
<td>LL to HL, 10% to FL</td>
</tr>
<tr>
<td>Load/line regulation</td>
<td>(0.5%)</td>
<td>(0.2%)</td>
<td>(V_{NOM})</td>
<td>LL to HL, NL to 10%</td>
</tr>
<tr>
<td>Output temperature drift</td>
<td>0.02</td>
<td>0.01</td>
<td>%/^\circ C</td>
<td>Over rated temp.</td>
</tr>
<tr>
<td>Long term drift</td>
<td>0.02</td>
<td>0.02</td>
<td>%/1K hours</td>
<td></td>
</tr>
<tr>
<td>Output ripple, pp</td>
<td>2V, 3.3V</td>
<td>100</td>
<td>(mV)</td>
<td>20MHz bandwidth</td>
</tr>
<tr>
<td>5V</td>
<td>2%</td>
<td>3%</td>
<td>(V_{NOM})</td>
<td>20MHz bandwidth</td>
</tr>
<tr>
<td>10V – 95V</td>
<td>3%</td>
<td>0.75%</td>
<td>(V_{NOM})</td>
<td>20Hz bandwidth</td>
</tr>
<tr>
<td>Output voltage trimming[a]</td>
<td>50%</td>
<td>110%</td>
<td>(V_{NOM})</td>
<td>Volts 0.25V max. neg. leg</td>
</tr>
<tr>
<td>Total remote sense compensation</td>
<td>0.5</td>
<td>0.5</td>
<td>Volts</td>
<td></td>
</tr>
<tr>
<td>OVP setpoint</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
<td>Automatic restart</td>
</tr>
<tr>
<td>Current limit</td>
<td>105%</td>
<td>135%</td>
<td>(I_{NOM})</td>
<td>Automatic restart</td>
</tr>
<tr>
<td>Short circuit current</td>
<td>105%</td>
<td>140%</td>
<td>(I_{NOM})</td>
<td>Automatic restart</td>
</tr>
</tbody>
</table>

\[a\] 10V to 15V outputs, standard trim range ±10%. Consult factory for wider trim range. 95 Vout cannot be trimmed up.

CONTROL PIN SPECIFICATIONS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>MegaMod Jr. (E-Grade)</th>
<th>MegaMod Jr. (C-, I-, M-Grade)</th>
<th>Units</th>
<th>Test Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gate out impedance</td>
<td>50</td>
<td>50</td>
<td>Ohms</td>
<td></td>
</tr>
<tr>
<td>Gate in impedance</td>
<td>1,000</td>
<td>1,000</td>
<td>Ohms</td>
<td></td>
</tr>
<tr>
<td>Gate in high threshold</td>
<td>6</td>
<td>6</td>
<td>Volts</td>
<td>Use open collector</td>
</tr>
<tr>
<td>Gate in low threshold</td>
<td>0.65</td>
<td>0.65</td>
<td>Volts</td>
<td></td>
</tr>
<tr>
<td>Gate in low current</td>
<td>6</td>
<td>6</td>
<td>mA</td>
<td></td>
</tr>
</tbody>
</table>
MegaMod Jr. Specifications (Cont.)

DIELECTRIC WITHSTAND CHARACTERISTICS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>MegaMod Jr. (E-Grade)</th>
<th>MegaMod Jr. (C-, I-, M-Grade)</th>
<th>Unit</th>
<th>Test Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input to output</td>
<td>3,000</td>
<td>3,000</td>
<td>V_{RMS}</td>
<td>Baseplate earthed</td>
</tr>
<tr>
<td>Output to baseplate</td>
<td>500</td>
<td>500</td>
<td>V_{RMS}</td>
<td></td>
</tr>
<tr>
<td>Input to baseplate</td>
<td>1,500</td>
<td>1,500</td>
<td>V_{RMS}</td>
<td></td>
</tr>
</tbody>
</table>

THERMAL CHARACTERISTICS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>MegaMod Jr. (E-Grade)</th>
<th>MegaMod Jr. (C-, I-, M-Grade)</th>
<th>Units</th>
<th>Test Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efficiency</td>
<td>78 – 88%</td>
<td>80 – 90%</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>Baseplate to chassis</td>
<td>0.2</td>
<td>0.2</td>
<td>°C/Watt</td>
<td></td>
</tr>
</tbody>
</table>

MECHANICAL SPECIFICATIONS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>MegaMod Jr. (E-Grade)</th>
<th>MegaMod Jr. (C-, I-, M-Grade)</th>
<th>Units</th>
<th>Test Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Up</td>
<td>4.5 (127)</td>
<td>4.5 (127)</td>
<td>Ounces (Grams)</td>
<td></td>
</tr>
<tr>
<td>2 Up</td>
<td>8.8 (250)</td>
<td>8.8 (250)</td>
<td>Ounces (Grams)</td>
<td></td>
</tr>
<tr>
<td>3 Up</td>
<td>13.3 (377)</td>
<td>13.3 (377)</td>
<td>Ounces (Grams)</td>
<td></td>
</tr>
</tbody>
</table>
MegaMod Mechanical Specifications

Inputs
1. Input 1 – Gate Out #2
2. Gate Out #1 – Gate In #2
3. Gate In #1 – Gate Out #3
4. +Input – Gate In #3

Outputs
- Output #1
- Output #2
- Output #3

L- and LJ-Series
- A – Output
- B – Sense
- C – Trim
- D – Sense
- E – Output

R- and RJ-Series
- A – Output
- B – Sense
- C – Trim
- D – Sense
- E – Output

P- and PJ-Series
- A – Output
- B – Sense
- C – Trim
- D – Sense
- E – Output

Mounting Information
- Use #6 machine hardware torqued to 5-7 in-lbs.
- NUT TERMINAL LUG SCREW HELICAL LOCK WASHER
Vicor’s comprehensive line of power solutions includes high density AC-DC and DC-DC modules and accessory components, fully configurable AC-DC and DC-DC power supplies, and complete custom power systems.

Information furnished by Vicor is believed to be accurate and reliable. However, no responsibility is assumed by Vicor for its use. Vicor makes no representations or warranties with respect to the accuracy or completeness of the contents of this publication. Vicor reserves the right to make changes to any products, specifications, and product descriptions at any time without notice. Information published by Vicor has been checked and is believed to be accurate at the time it was printed; however, Vicor assumes no responsibility for inaccuracies. Testing and other quality controls are used to the extent Vicor deems necessary to support Vicor’s product warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

Specifications are subject to change without notice.

Vicor’s Standard Terms and Conditions
All sales are subject to Vicor’s Standard Terms and Conditions of Sale, which are available on Vicor’s webpage or upon request.

Product Warranty
In Vicor’s standard terms and conditions of sale, Vicor warrants that its products are free from non-conformity to its Standard Specifications (the “Express Limited Warranty”). This warranty is extended only to the original Buyer for the period expiring two (2) years after the date of shipment and is not transferable.

UNLESS OTHERWISE EXPRESSLY STATED IN A WRITTEN SALES AGREEMENT SIGNED BY A DULY AUTHORIZED VICOR SIGNATORY, VICOR DISCLAIMS ALL REPRESENTATIONS, LIABILITIES, AND WARRANTIES OF ANY KIND (WHETHER ARISING BY IMPLICATION OR BY OPERATION OF LAW) WITH RESPECT TO THE PRODUCTS, INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES OR REPRESENTATIONS AS TO MERCHANTABILITY, FITNESS FOR PARTICULAR PURPOSE, INFRINGEMENT OF ANY PATENT, COPYRIGHT, OR OTHER INTELLECTUAL PROPERTY RIGHT, OR ANY OTHER MATTER.

This warranty does not extend to products subjected to misuse, accident, or improper application, maintenance, or storage. Vicor shall not be liable for collateral or consequential damage. Vicor disclaims any and all liability arising out of the application or use of any product or circuit and assumes no liability for applications assistance or buyer product design. Buyers are responsible for their products and applications using Vicor products and components. Prior to using or distributing any products that include Vicor components, buyers should provide adequate design, testing and operating safeguards.

Vicor will repair or replace defective products in accordance with its own best judgment. For service under this warranty, the buyer must contact Vicor to obtain a Return Material Authorization (RMA) number and shipping instructions. Products returned without prior authorization will be returned to the buyer. The buyer will pay all charges incurred in returning the product to the factory. Vicor will pay all reshipment charges if the product was defective within the terms of this warranty.

Life Support Policy
VICOR’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER AND GENERAL COUNSEL OF VICOR CORPORATION. As used herein, life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness. Per Vicor Terms and Conditions of Sale, the user of Vicor products and components in life support applications assumes all risks of such use and indemnifies Vicor against all liability and damages.

Intellectual Property Notice
Vicor and its subsidiaries own Intellectual Property (including issued U.S. and pending patent applications) relating to the products described in this data sheet. No license, whether express, implied, or arising by estoppel or otherwise, to any intellectual property rights is granted by this document. Interested parties should contact Vicor’s Intellectual Property Department.

Vicor Corporation
25 Frontage Road
Andover, MA, USA 01810
Tel: 800-735-6200
Fax: 978-475-6715

email
Customer Service: custserv@vicorpower.com
Technical Support: apps@vicorpower.com