Introduction

The Converter housed in a Package (ChiP) Non-Isolated Bus Converter Module (NBM) evaluation board described in this document is designed to be used with the through-hole NBM6123 ChiP family (PNs: NBM6123T46C15A6T0R, NBM6123T60E12A7T0R).

The NBM evaluation board can be configured for various enabling and fault-monitoring schemes, as well as to exercise various loading conditions depending on the application requirements. The evaluation board can be used to evaluate NBMs in either a stand-alone configuration or as an array of modules.

It is important to remember the fast response of NBMs can readily show the limitations of the source, load and associated wiring connected to the evaluation board. Care should be exercised to minimize the stray source and load impedance in order to fully exercise the NBM.

The NBM non-isolated topology allows start up in forward and reverse directions and provides bidirectional protections. However, if powertrain is disabled by any protection, and \(V_{SEC} \) is present, then voltage equal to \(V_{SEC} \) minus two diode drops will appear on the primary side.
IMPORTANT NOTICE:

Read the precautions below entirely BEFORE using the NBM™ evaluation board. Do not operate the evaluation board unless you have the appropriate safety precautions in place on your bench to guarantee safety.

The list below is not comprehensive and is not a substitute for common sense and good practice.

- During operation, the power devices and surrounding structures can be operated safely at high temperatures.
- Remove power and use caution when connecting and disconnecting test probes and interface lines to avoid inadvertent short circuits and contact with hot surfaces.
- Never use a jumper in place of the fuse.
- When testing electronic products always use approved safety glasses. Follow good laboratory practice and procedures.
- Avoid creating ground loops between the SGND and PGND pins when making measurements.
- Care should be taken to protect the user from accidental contact when under power.
- Care should be taken to avoid reversing polarities if connecting to the opposite (solder) side of the board.
- The product evaluation boards described in this document are designed for general laboratory evaluation and are not suitable for installation in end-user equipment.
- Refer to the specific NBM module data sheet for electrical, thermal and mechanical product details.

This board provides a convenient way to evaluate or demonstrate the performance of Vicor NBM products. Kelvin connections are provided for accurate voltage measurements on power nodes. Sockets are provided to permit quick installation and changing of bulk filtering capacitors. The evaluation board also provides lugs for input / output connections, test points and sockets for easy connection to standard test equipment, and a high-performance air-cooled heat-sink assembly.

Enable Options

1. Apply input voltage to the NBM primary or secondary pins greater than the undervoltage lockout. (Default)
2. On-board mechanical switch.
3. External control using available test point.

Fault Monitor Options

1. On-board LED: the VAUX pin drives a visible LED for visual feedback on the NBM status such as enabled or fault condition.
Contents

The evaluation board ships with the following contents:

- 1 x NBM™ evaluation board
- 1 x Top heat sink pre-installed
- 1 x hardware kit:
 - 1 x through-hole aluminum electrolytic output capacitor (C121)
 - 3 x Connector Receptacle 8 position
 - 2 x Connector socket 2 position
 - 5 x size 10 screws, lugs and washers

Features

The NBM evaluation board has the following features:

1. Input and output lugs for source and load connections
2. Appropriately rated input fuse
3. Input aluminum electrolytic capacitor for additional source decoupling
4. Basic output filtering footprint, including sockets to add through-hole output aluminum electrolytic capacitors
5. Toggle switch for enabling and disabling the NBM via the enable (EN) pin
6. Oscilloscope probe jack for accurate, high frequency output voltage measurements
7. Connectors for NBM signal pins (TM, EN, and VAUX) and temperature monitor filtered signal
8. Kelvin voltage test points for all power pins

Board Description

The following section provides a detailed description of the evaluation board components, test points and sockets.

General Components

1. *(PS01)*: The NBM is inherently a reversible product. This means that a voltage source placed at the secondary will bias the powertrain and allow the units to power up. Note if the units is held in a disabled state using the EN pin any voltage applied to the secondary pins of NBM will appear on the primary pins minus two diode drops. Loading the primary in this state may permanently damage the unit since the load current path would be through the body diode of the primary stage FETs. See the NBM data sheet for additional insight.

2. **Input lugs**: Sized for #10 hardware. Use for making connection to the input source. This board does not contain reverse polarity protection. Check for proper polarity before applying the power. It is important to remember that noise from the source and voltage drops, will appear at the output of the bus converter multiplied by transformation ratio (K). The K factor is the ratio of the output voltage to the input voltage (VOUT / VIN).

3. **Input fuse (F101 & F102)**: Appropriately rated for the NBM model installed on the board. The fuse is meant to protect against excessive damage in a short-circuit event.

4. **Input filtering**: Aluminum electrolytic input capacitor (C101).

5. **Enable / Disable switch (SW101)**: When actuator is towards “ON” text on the board, the (EN) pin will be open and the NBM will be enabled. When actuator is towards “OFF” text on the board, the (EN) pin will be connected to (SGND) pin and the NBM will be disabled. When switch (SW101) is “ON”, an external voltage source can control the EN pin state.
6. **Signal connector (J102):** provides access to the bus converter signal pins (TM, EN and VAUX) as well as (TM_DC) externally filtered signal. All signal pins are reference to the primary non-isolated voltage return (SGND) pin.

<table>
<thead>
<tr>
<th></th>
<th>SGND</th>
<th>SGND</th>
<th>SGND</th>
<th>SGND</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TM_PWM</td>
<td>TM_DC</td>
<td>EN</td>
<td>VAUX</td>
</tr>
</tbody>
</table>

- **Temperature Monitor (TM):** The NBM (TM) pin outputs a 250kHz PWM signal. A 1kΩ and a 10nF is the recommended low-pass filtering solution. (TM_PWM) and filtered (TM_DC) are both accessible on (J102) connector header. (TM_DC) measures 1.27V for a 27°C internal temperature corresponding to a (TM_PWM) duty cycle of 38.48%

- **Enable Control (EN):** Connecting the NBM (EN) pin to (SGND) will disable the module. (SW101) can be used to turn off the powertrain and disable the module. The (EN) pin is internally pulled up. During a fault condition, this signal will remain high while input voltage is applied and greater than VµC_ACTIVE. This connector can be used to bus the (EN) pin in an array allowing array synchronous start up.

- **Auxiliary Voltage Source (VAUX):** The NBM (VAUX) can be used as a fault flag it is internally driven low during a fault condition. The (VAUX) pin can also be used as a ready to process full power flag. A 2ms delay from powertrain active is introduced on this pin signaling the end of soft start. During normal operation this pin can be used as an auxiliary supply up to 4mA max load.

7. **Output lugs:** Sized for #10 hardware. Use these lugs to connect the output directly to the load.

8. **Output oscilloscope probe Jack (J101):** Used for making accurate scope measurements of the output voltage (e.g., ripple). The jack is directly compatible with many common passive voltage probes models. Remove the grounding lead and insulating barrel of the probe and insert the probe tip and barrel directly into the jack, insuring that the probe tip sits in the center socket of the jack. To avoid the risk of an inadvertent short circuit, do not attempt to install while power is applied. This Johnson Jack is Kelvin connected to the module output pins. The effect of the output capacitors will not be noticeable.

9. **Output filter:** 10x output ceramic capacitors 1206 footprint provision (C103, C104 and C113 – C120). In addition to socket (C121) that can be used for easy installation of an aluminum electrolytic output capacitor included with in hardware kit of the evaluation board.

10. **Chassis ground (R106):** is a 2010 package. The footprint can be used to provide a convenient means to short the chassis and heat sink common ground to the power-ground plane.
Test Points Description

Test nodes are labeled and include an SMT test point for attaching miniature probes, clips or hooks.

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>+VIN, PGND</td>
<td>Provide measurement test points for the input voltage of the NBM™ module. Test points are Kelvin connected to the module input pins.</td>
</tr>
<tr>
<td>EN, SGND</td>
<td>Used to measure the NBM EN pin relative to SGND pin.</td>
</tr>
<tr>
<td>TM_DC, SGND</td>
<td>Used to measure the filtered NBM TM signal using a recommended low pass filter relative to SGND pin.</td>
</tr>
<tr>
<td>TM_PWM, SGND</td>
<td>Used to measure the NBM TM pin which is a pulse width modulated output signal relative to SGND pin.</td>
</tr>
<tr>
<td>VAUX, SGND</td>
<td>Used to measure the NBM VAUX pin output signal relative to SGND pin.</td>
</tr>
<tr>
<td>+VOUT, PGND</td>
<td>Provide measurement test points for the output voltage of the NBM module. Test points are Kelvin connected to the module output pins.</td>
</tr>
</tbody>
</table>
Figure 4
PCB#42142 evaluation board, top side

Figure 5
PCB#42142 evaluation board, bottom side
Bill of Materials

Following table describes the design specific components of the NBM™ evaluation boards.

Table 2
NBM evaluation board components common to all boards

<table>
<thead>
<tr>
<th>Reference Designator</th>
<th>Description</th>
<th>Manufacturer</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>C101</td>
<td>CAP ALEL 10µ 20% 450V RAD</td>
<td>United Chemi-Con</td>
<td>EKXG451ELL100MK20S</td>
</tr>
<tr>
<td>C102</td>
<td>CAP X7R 0.010µF 10% 50V 0603</td>
<td>Murata Manuafacturing</td>
<td>GRM18BR71H103KA01D</td>
</tr>
<tr>
<td>D101</td>
<td>DLED RED 0805</td>
<td>Rohm</td>
<td>SML-211UTT86</td>
</tr>
<tr>
<td>F101</td>
<td>Design specific – see Table 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F102</td>
<td>Design specific – see Table 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>J101</td>
<td>JACK VERTICAL MECH THRU HOLE</td>
<td>Tektronix</td>
<td>131-5031-00</td>
</tr>
<tr>
<td>J102</td>
<td>CONN HEADER R/A 0.100 8 POS 30 AU</td>
<td>TE Connectivity Ltd</td>
<td>5-103166-2</td>
</tr>
<tr>
<td>HTSNK</td>
<td>Design specific – see Table 3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PCB Part Number

<table>
<thead>
<tr>
<th>Reference Designator</th>
<th>Description</th>
<th>Manufacturer</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>R103</td>
<td>RES 0Ω JUMPER 1A 0603</td>
<td>KOA Speer Electronics</td>
<td>RK73Z1JTTD</td>
</tr>
<tr>
<td>R104</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R105</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R102</td>
<td>RES 750Ω 1/10W 5% 0603</td>
<td>KOA Speer Electronics</td>
<td>RK73B1JTTD751J</td>
</tr>
<tr>
<td>R101</td>
<td>RES 1kΩ 1/10W 1% 0603</td>
<td>KOA Speer Electronics</td>
<td>RK73H1JTTD1001F</td>
</tr>
<tr>
<td>SW101</td>
<td>SW Horizontal SPDT 1 POS SMD</td>
<td>C&K Components</td>
<td>GT11MSABETR</td>
</tr>
</tbody>
</table>

Table 3
BOM additions, components which are NBM model specific

Evaluation board numbers: NBM6123E60E12A7T0R; NBM6123E46C15A6T0R

<table>
<thead>
<tr>
<th>Reference Designator</th>
<th>Description</th>
<th>Manufacturer</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>PS01</td>
<td>LV NBM</td>
<td>Vicor Corporation</td>
<td>NBM6123T60E12A7T0R; NBM6123T46C15A6T0R</td>
</tr>
<tr>
<td>PCB Part Number</td>
<td>NBM evaluation board</td>
<td>Vicor Corporation</td>
<td>42142</td>
</tr>
<tr>
<td>F101</td>
<td>FUSE 60A 170VDC THRU HOLE</td>
<td>Littelfuse</td>
<td>0TLS060.TXLS</td>
</tr>
<tr>
<td>HTSNK</td>
<td>BOM HEAT SINK, TOP</td>
<td>Vicor Corporation</td>
<td>42676</td>
</tr>
</tbody>
</table>
Recommended Test Equipment

The following is a list of recommended test equipment.

1. Safety glasses.
2. DC power supply: Refer to the specific NBM™ model data sheet to ensure the supply has sufficient power and current capability.
3. Electronic load: Refer to the specific NBM model data sheet to ensure the load has sufficient power handling and current capability for testing.
5. Digital multi-meters (DMMs).
6. Oscilloscope and probes.
7. Interconnect wires, cables and fastening hardware.

Basic Connections

- Confirm bench equipment is powered off.
- Connect the input DC power supply positive lead to the +IN input lug of the evaluation board, connect the input power supply negative lead to the PGND input lug of the evaluation board.
- Connect the CHASSIS_GND lug of the evaluation board to a safety "green wire" earth ground.
- Connect the +OUT lug of the evaluation board to the electronic load positive input, connect the PGND output lug of the evaluation board to the electronic load negative input.
- Verify proper polarity of the connections.
- Verify (SW101) desired actuator position
- Direct airflow from the cooling fan through the NBM heat sink fins.
- Have the latest NBM datasheet on hand for reference.

Board Operation Details

- SW01 provides control over enable.
 - In the "OFF" position, the switch will connect SGND pin to the EN net, which disables the NBM.
 - In the "ON" position, the EN net is allowed to float.
- External connection to EN is permitted using the EN test point. (SW01) should be set to “ON” to allow external control.
- The (J102) paralleling connectors can be used to connect EN nets across different boards.
 Note: to enable the NBMs in a parallel array, all boards need (SW01) set to “ON” to avoid pulling the EN node low.
- The heat sink assembly of the NBM is connected to the CHASSIS_GND lug.
 A connection from the CHASSIS_GND lug to earth ground is required for safety as the heat sink will be floating otherwise.
- The visible LED at D101 and its bias resistor network (R102 & R105) are connected to the VAUX pin.
 LED turns “ON” when VAUX is high signaling that the NBM is ready to process full power.
Thermal Considerations

The evaluation board is supplied with a pre-installed 27mm top only for PCB#42142. A fan blowing across the evaluation board and heat sink assembly is required during operation at load. The fan should be placed about 4 inches away from the evaluation board facing the output voltage side. A typical bench-top fan is recommended providing about 1000LFM. Using the supplied rubber feet is also required in order to elevate the board about 0.4 inches off a flat surface and enable air flow underneath the PCB.

The PCB top layer used of the PCB#42142 is required to be of the same potential of the heat sink; this is to allow heat transfer from the bottom of the ChiP™ and leads to the heat sink. Chromerics GEL-8010 is used on both top and bottom surface of the ChiP. (Between the ChiP top and heat sink as well as the ChiP bottom and the PCB). It is also required to apply to the heat sink extended surface resting on the PCB.

Paralleling

The paralleling and sharing performance of multiple NBMs can be easily demonstrated by stacking multiple evaluation boards and interconnecting the inputs and outputs with standoffs to create a parallel array. Each NBM in an array operates in the same way as it does as a stand-alone unit. With equal impedance, the load is effectively shared across multiple NBMs. Mismatches in this case are modest, and are further canceled by an effective negative voltage vs. temperature coefficient.

The following connections and settings should be used for an array of NBM evaluation boards:

- All NBMs in a parallel array must be the same model.
- The boards should be physically stacked using metal standoffs at the +IN & PGND input lugs, the +OUT & PGND lugs, and the CHASSIS_GND lug. This also connects these nodes electrically so that a single source, single load and earth ground connection can be made to the system.
- The NBM is a three-terminal device; it is required to connect all PGND lugs to the same potential.
- Standoffs must be sufficient in length to avoid contact between boards and to permit airflow to all NBMs in the system.
- If coordinated enable control then the paralleling connectors (J102) can be used to easily interconnect the EN pin across boards.
- The paralleling connector receptacle (J102) is provided to daisy chain EN signal and SGND. The receptacle will accept a wire size range 26 – 22AWG, 0.12 – 0.3mm² wires.

The paralleling and current sharing capability of the devices can be demonstrated by stacking multiple evaluation board and interconnecting the inputs, outputs and power grounds with standoffs of sufficient current rating to create a parallel array. If synchronous start up is desired, connect EN pin 5 and SGND pin 6 in (J102) using a twisted pair to all respective pins in different paralleled units.

Figure 6
NBM evaluation boards stacked to form a high-power parallel array, using common PGND and both input and output power terminals
Limitation of Warranties

Information in this document is believed to be accurate and reliable. HOWEVER, THIS INFORMATION IS PROVIDED “AS IS” AND WITHOUT ANY WARRANTIES, EXPRESSED OR IMPLIED, AS TO THE ACCURACY OR COMPLETENESS OF SUCH INFORMATION. VICOR SHALL HAVE NO LIABILITY FOR THE CONSEQUENCES OF USE OF SUCH INFORMATION. IN NO EVENT SHALL VICOR BE LIABLE FOR ANY INDIRECT, INCIDENTAL, PUNITIVE, SPECIAL OR CONSEQUENTIAL DAMAGES (INCLUDING, WITHOUT LIMITATION, LOST PROFITS OR SAVINGS, BUSINESS INTERRUPTION, COSTS RELATED TO THE REMOVAL OR REPLACEMENT OF ANY PRODUCTS OR REWORK CHARGES).

Vicor reserves the right to make changes to information published in this document, at any time and without notice. You should verify that this document and information is current. This document supersedes and replaces all prior versions of this publication.

All guidance and content herein are for illustrative purposes only. Vicor makes no representation or warranty that the products and/or services described herein will be suitable for the specified use without further testing or modification. You are responsible for the design and operation of your applications and products using Vicor products, and Vicor accepts no liability for any assistance with applications or customer product design. It is your sole responsibility to determine whether the Vicor product is suitable and fit for your applications and products, and to implement adequate design, testing and operating safeguards for your planned application(s) and use(s).

VICOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED OR WARRANTED FOR USE IN LIFE SUPPORT, LIFE-CRITICAL OR SAFETY-CRITICAL SYSTEMS OR EQUIPMENT. VICOR PRODUCTS ARE NOT CERTIFIED TO MEET ISO 13485 FOR USE IN MEDICAL EQUIPMENT NOR ISO/TS 16949 FOR USE IN AUTOMOTIVE APPLICATIONS OR OTHER SIMILAR MEDICAL AND AUTOMOTIVE STANDARDS. VICOR DISCLAIMS ANY AND ALL LIABILITY FOR INCLUSION AND/OR USE OF VICOR PRODUCTS IN SUCH EQUIPMENT OR APPLICATIONS AND THEREFORE SUCH INCLUSION AND/OR USE IS AT YOUR OWN RISK.

Terms of Sale

The purchase and sale of Vicor products is subject to the Vicor Corporation Terms and Conditions of Sale which are available at: [http://www.vicorpower.com/termsconditions]

Export Control

This document as well as the item(s) described herein may be subject to export control regulations. Export may require a prior authorization from U.S. export authorities.

Contact Us: [http://www.vicorpower.com/contact-us]

Vicor Corporation
25 Frontage Road
Andover, MA, USA 01810
Tel: 800-735-6200
Fax: 978-475-6715
www.vicorpower.com

email
Customer Service: custserv@vicorpower.com
Technical Support: apps@vicorpower.com

©2018 – 2019 Vicor Corporation. All rights reserved. The Vicor name is a registered trademark of Vicor Corporation. All other trademarks, product names, logos and brands are property of their respective owners.