

Factorized Power Architecture

New Engines for Speed – Efficiency – Density

Quest for the Optimum Power Distribution Architecture

- Which power distribution architectures can efficiently support power systems from wall plugs, AC or DC outlets, through capacitors, super-capacitors or batteries, to processor cores – in the home, in the office, in the factory and everywhere in between?
 - Centralized Power Architecture (CPA)
 - Distributed Power Architecture (DPA)
 - Intermediate Bus Architecture (IBA)
 - Factorized Power Architecture (FPA)

Power Architecture Evolution

Centralized Power Architecture

Centralized power remains pervasive in smaller systems due to its simplicity and low cost

• But is unable to efficiently deliver high currents at low voltages

Power Architecture Evolution

Distributed Power Architecture

Distributed power addresses architectural limitations of CPA

- Provides efficient power distribution at higher voltages
- Puts bricks at the Point of Load (POL)
- But DPA comes at a price
 - Board real estate
 - System cost

Power Architecture Evolution

Intermediate Bus Architecture

Intermediate bus deals with the proliferation of load voltages

- Puts inexpensive non-isolated buck converters at the POL
- But IBA is limited by
 - Inability to transform V and I
 - Having to decrease a duty cycle to reduce output voltage
 - Inductive inertia standing in the way of dynamic loads

Power Architecture Evolution

Factorized Power Architecture

Factorized power addresses demanding POL current and voltage requirements:

- Puts a fast "current multiplier" at POL nodes
- Transforms V and I down to fractional POL voltages
- 100% effective duty cycle

IBA – Inherent Duty Cycle Limitations

FPA – No Duty Cycle Limitations

IBA – Inherent Step-Down Limitations

FPA – No Step-Down Limitations

IBA – Inherent Energy Storage & Dynamic Response Limitations

FPA – No Energy Storage or Dynamic Response Limitations

Energy Storage in the Wrong Place

Energy Storage in the Right Place

The Building Blocks of Factorized Power

- <u>V•I Chips (VICs)</u> "Full VIC" ~ 1.0 in² surface mount package
 - PRM Pre-Regulator Module
 - VTM Voltage Transformation Module

Basic FPA with PRM & VTM

- PRM <u>controls</u> the factorized bus voltage (V_f) to <u>regulate</u> the VTM output
- VTM transforms and isolates at the POL
- Combination: efficient distribution, regulation, transformation and isolation

FPA Example

Adaptive Loop with PRM

BOA

FPA Example

Independently Regulated Outputs

The Engine Under the Hood – PRM

"Full VIC" PRM Capabilities

- ZVS buck / boost regulator
- Input voltage: 1.5-400 V (up to 5:1 range)
- Step-up/step-down range: up to 5:1
- Output power: up to 300 W
- Conversion efficiency: up to 98%
- Frequency: up to 2 MHz

"Full VIC" PRM Capabilities

- ZVS buck / boost regulator
- Input voltage: 1.5-400 V (up to 5:1 range)
- Step-up/step-down range: up to 5:1
- Output power: up to 300 W
- Conversion efficiency: up to 98%
- Frequency: up to 2 MHz

PRM – ZVS Buck/Boost Engine

- ZVS buck-boost topology and control architecture
- High frequency operation

Power cycle comprises four conduction phases +In +In +Out
 1. Input phase Frequencies

Buck-Boost Control

 Power cycle comprises four conduction phases
 1. Input phase
 2. Input-output phase

Power cycle comprises four conduction phases
1. Input phase
2. Input-output phase
3. Free-wheeling phase

Power cycle comprises four conduction phases
1. Input phase
2. Input-output phase
3. Free-wheeling phase
4. Clamp phase

In VIC

1000

VICON

0CM

Un VIC

1000

VICON

0CM

In VIC

1070

VICON

0CM

In VICI

1070

VICION

0CM

IL WICH

1000

1070

VIDON

0CM

In VICE

1000

VIDON

BCM

In VICI

1000

VIDON

0CM

Vin < Vout

In VEL

VIDON

0CM

Vin < Vout

In VICE

1070

VIDON

0CM

0

10 C

I WE

1000

VICTOR

I WE

1000

VICTOR

IL VE

1000

VICTOR

In VIC

1000

VICON

0CM

In VIC

1070

VIDON

BCM

In VIC

1000

UN VICTOR

0CM

In VIC

1000

VICON

0CM

In VIC

VICON

0CM

In VICI

1070

VICON

0CM

0

IL VE

1000

VICON

In VIC

1000

VICON

0CM

In VIC

1000

VICON

In VIC

1000

VICTOR

0CM

In VICI

1070

VICTOR

BCM

In VICE

1000

VICTOR

BCM

In VICI

1000

VIDON

0CM

In VICI

UN VICTOR

0CM

The Engine Under the Hood – VTM

"Full VIC" VTM Capabilities

- ZCS / ZVS Sine Amplitude Converter (SAC)
- Input voltage: 0-400 V (up to 2:1 range)
- Output voltage: 0-400 V
- Transformation ratio (K): 1/200 to 200
- Output current or power: up to 100 A or 300 W
- Conversion efficiency: up to 97%
- Conversion frequency: up to 4 MHz, fixed

VTM / BCM SAC Power Train

 Primary "Engine" is a Low Q oscillator formed by CRES and the leakage inductance of T1

VTM / BCM SAC Power Train

• The Low Q oscillator is driven by an H-bridge

NC3

VTM / BCM SAC Power Train

• In this particular example, secondary rectification is also performed using an H-bridge

VTM/BCM SAC Power Train

• Load current drives the Low Q oscillator by pulling primary current

VTM / BCM Sine Amplitude Converter (SAC)

• The amplitude of the Low Q oscillator is proportional to the load current as reflected back to the primary

VTM / BCM Level 2 Behavioral Model

48 V to 1.5 V 100 A VTM

VTM / BCM SAC Control

- The controller locks to the natural frequency of the Low Q oscillator and turns all switches ON and OFF under ZCS/ZVS conditions
- Conduction states result in a 100% effective duty cycle
- Control circuitry recycles the gate drive energy from each pair of switches

VTM / BCM SAC Control

- Control Servo locks to Sine Amplitude Converter resonant frequency and phase, compensating for power train parametric variabilities
- Soft start, inrush control and Adaptive Loop Compensation of Rout

VIDOI

BON

VIDIO

BON

VIDDA

NOM

VIDDI

VIDEN

BON

VTM / BCM SAC Engine – Additional Features

Bi-directional power transfer

Flexibility of topology

Common-mode cancellation

Superior System Performance

- Higher power/current density
 - Power conversion building blocks occupy less space
- Higher efficiency
 - Power conversion building blocks generate less heat
- Faster transient response
 - Overcomes processor/power technology gap
- Lower input and output noise
 - Reduced filtering frees up board space

SAC: Highest Power Density

- High fixed switching frequency (up to 4 MHz)
 - Reduces size of all reactive components
- Zero-current & zero-voltage switching (ZCS/ZVS)
 - Reduces stresses, losses and heat
- No serial energy storage
 - No output inductor
- 100% effective transformation duty cycle
 - Efficient power train utilization

From niPOLs to VICs

16 A / 80 W niPOL

- Surface mount
- Efficiency: 12 Vin to 1.2 Vout = 83%
- 1.30" x 0.53" x 0.37"
 (33,0 mm x 13,5 mm x 9,3 mm)
- Area: 0.7 in² (4,5 cm²)
- Volume: 0.25 in³ (4,1 cm³)

100 A / 300 W V·I Chip

- Surface mount
- Efficiency: 48 Vin to 1.2 Vout = 91%
- 1.26 " x 0.85" x 0.24"
 (32,0 mm x 21,5 mm x 6,0 mm)
- Area: 1.1 in² (6,9 cm²)
- Volume: 0.26 in³ (4,1 cm³)

From niPOLs to VICs

16 A / 80 W niPOL

100 A / 300 W V·I Chip

SAC: Highest Efficiency

- ZCS / ZVS
 - No switching losses
- Low Q transformer
 - Reduced winding losses
- No serial energy storage
 - No inductor losses
- 100% effective transformation duty cycle
 - Efficient power train utilization

Efficiency

VIDIO

BCM

Efficiency

VIDOI

0CM

SAC: Fastest Dynamic Response

- No serial energy storage & Low Q transformer
 - No current inertia & quick settling
- High fixed switching frequency (up to 4 MHz)
 - Minimal cycle-to-cycle delay
- Load independent control
 - No lag due to control loop
- Bi-directional power processing
 - Load dump energy recycled to input
- Capacitance multiplication
 - High effective POL capacitance: $Cout_{(eff)} \sim Cin \cdot (1/K)^2 + Cout$

Dynamic Response

K = 1/32 VTM @ Vout = 1 V

0 – 100 A load step with 100 μ F input capacitance and <u>NO</u> output capacitance

^{100 - 0} A load step with 100μ F input capacitance and <u>NO</u> output capacitance

SAC: Lowest Noise

- ZCS/ZVS
 - Order of magnitude reduction in *dl/dt*
 - Significant reduction in *dV/dt*
- Symmetric power train
 - Cancellation of common-mode noise
- High fixed switching frequency (up to 4 MHz)
 - Easy to filter

Output Noise

K = 1/32 VTM @ 1.0 V & 100 A

Output voltage ripple @ 100 A with <u>NO</u> bypass capacitance

Output voltage ripple @ 100 A with 200 µF ceramic bypass capacitance and 20 nH distribution inductance

The Flexibility of FPA

- Most contemporary power systems are a hybrid of centralized, distributed and intermediate bus
- Factorized power building blocks support existing power distribution architectures

V-I Chip Package Flexibility

Surface mount BGA package for in-board mounting

Surface mount J-Lead package for on-board mounting

Surface mount extended J-Lead package for on-board mounting

Intermediate Bus

- VTMs function as intermediate bus converters (BCMs)
- More power and more performance in less space

Distributed Power

- A PRM and VTM pair can replace bricks
- Superior performance at less cost

VICBrick – Up to 100 A in a 0.25" High Quarter-brick Package

Centralized Power

- PRMs can be remotely located
- Low current factorized buses can be easily routed throughout the system

From the Wall Plug to the Processor Core

150 – 200 Watt FPA Solution

Conventional Power System Architecture 12 V Intermediate Bus

12 V Input PRM/VTM Sub-system

Advanced Processor FPA System

Comparative Benchmark

	Conventional Pentium 4 Power System	12 V Input PRM / VTM Sub-System	Advanced Processor FPA System
Front-end			
Efficiency	86%	86%	91%
Power dissipation	18 W	18 W	11 W
Power density	6.6 W/in ³	6.6 W/in ³	25 W/in ³
POL (processor)			
Efficiency (1.2V @ 80 A)	87%	89%	93%
Power dissipation	14 W	12 W	7 W
Power density	23 W/in ³	59 W/in ³	120 W/in ³
Total (without auxiliary outputs)			
Efficiency	75%	77%	85%
Power dissipation	32 W	30 W	18 W
Power density	3.2 W/in ³	3.3 W/in ³	11.5 W/in ³

Power Architecture Evolution

Centralized Power (CPA)

Intermediate Bus (IBA)

Factorized Power (FPA)

Which is the Future?

FPA & V-I Chips Power Paradigm of the Future

Questions?