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New Engines for
Speed - Efficiency — Density




Factorized Power

Quest for the Optimum
Power Distribution Architecture

 Which power distribution architectures can efficiently support
power systems from wall plugs, AC or DC outlets, through
capacitors, super-capacitors or batteries, to processor cores —

In the home, In the office, in the factory and everywhere in
between?

— Centralized Power Architecture (CPA)
— Distributed Power Architecture (DPA)
— Intermediate Bus Architecture (IBA)

— Factorized Power Architecture (FPA)



Factorized Power

Power Architecture Evolution
Centralized Power (CPA)
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Centralized Power Architecture

Centralized power remains pervasive in smaller systems due to
its simplicity and low cost

* ButIs unable to efficiently deliver high currents at low voltages



Power Architecture Evolution
Centralized Power (CPA)

1

Distributed Power (DPA)

Isolated DC-DC converter

DC bus




Factorized Power

Distributed Power Arc

Distributed power addresses architectura

nitecture

limitations of CPA

* Provides efficient power distribution at higher voltages

* Puts bricks at the Point of Load (POL)

« But DPA comes at a price
— Board real estate
— System cost



Factorized Power

Power Architecture Evolution
Centralized Power (CPA)

1

Distributed Power (DPA)

r

Intermediate Bus (IBA)

Isolated intermediate

bus converter
Non-isolated POL
/ converters (niPOLS)

7

Semi-regulated DC bus
System board



Factorized Power

Intermediate Bus Architecture

Intermediate bus deals with the proliferation of load voltages
* Puts inexpensive non-isolated buck converters at the POL
« But IBA s limited by
— Inability to transform V and |

— Having to decrease a duty cycle to reduce output voltage
— Inductive inertia standing in the way of dynamic loads



Power Architecture Evolution

Centralized Power (CPA)

!

Distributed Power (DPA)
Intermediate Bus (IBA) Factorized Power (FPA)
Non-isolated pre-regulators
(PRMs)
Isolated POL
/ / /converters (VTMs)
DC bus

& system board



Factorized Power

Factorized Power Architecture

Factorized power addresses demanding POL current and
voltage requirements:

* Puts a fast “current multiplier” at POL nodes
+ Transforms V and | down to fractional POL voltages
« 100% effective duty cycle

10



Factorized Power

IBA - Inherent Duty Cycle Limitations

... Duty cycle here is only 7%

IBC niPY
: o At 0.8 Voult...
Isolation & Transfi /
J
Regulated
load voltage
Isolates C
Distribution bus steps down Steps down
e.g. Semi-regulated regulates
43 Vdc Semi-regulated

Intermediate Bus
e.g. 12 vdc
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Factorized Power

FPA — No Duty Cycle Limitations

100% effective duty
cycle at any Vout

PRM VTM
T Regulation;'%; Isolation & Tran
o
Y oohus o 3 Regulated load
voltage

DC bus L
e.g. 36-75 Vdc ' L r '

Factorized bus
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Factorized Power

IBA - Inherent Step-Down Limitations
niPOL IBA IBA IBA

48 \/dc 48 \/dc 48 \/dc 48 \/dc

2%

0.8 Vdc 0.8 vVdc 0.8 Vdc 0.8 Vdc
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Factorized Power

FPA — No Step-Down Limitations
niPOL IBA IBA IBA

48 \/dc 48 \/dc 48 \/dc 48 \/dc

2%

0.8 Vdc 0.8 Vdc 0.8 Vdc 0.8 Vdc 0.8 Vdc



Factorized Power

IBA - Inherent Energy Storage &
Dynamic Response Limitations

Upstream storage ineffective
as load bypass

L in wrong place

IBC

Isolation & Transf .

niPOL

Bulk storage required
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Factorized Power

FPA — No Energy Storage or
Dynamic Response Limitations

Upstream storage 1/K? times
more effective

No intervening L

oﬁ PRM

Regulation"#

No bulk storage needed

VTM

Isolation & Tran

16



Factorized Power

Energy Storage In the Right Place

... can be replaced
by 10 uF here

48 VdC 0 () ( v .' .. ._\._ . E 08 VdC




The Building Blocks of
Factorized Power

Vel Chips (VICs)
“Full VIC” ~ 1.0 in? surface mount package

PRM - Pre-Regulator Module

VTM - Voltage Transformation
Module

18



Factorized Power

Basic FPA with PRM & VTM

Local Loop
_ Factorized
Wide range bus Load
PRM-AL" © ce 0a
Input bus s o o Vf

* PRM controls the factorized bus voltage (V;) to regulate
the VTM output

» VTM transforms and isolates at the POL

+  Combination: efficient distribution, regulation,
transformation and isolation

Patents and Patents Pending
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Factorized Power

FPA Example
Adaptive Loop with PRM

V=48 Vdc

36-75 Vdc
Telecom bus

PRM-AL" © c

Load 2

Patents and Patents Pending
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Factorized Power

FPA Example

Independently Regulated Outputs

K=1/32

0.8 Vdc

B V.=26Vdc
PRM-IF” @ Load 1
36-75 Ve | B Isolated Remote Loo o
Telecom bus D '
Adaptive Loop
Load 2

PRM-AL" © c

Patents and Patents Pending
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Factorized Power

22



“Full VIC” PRM Capabilities

ZV'S buck / boost regulator

Input voltage: 1.5-400 V (up to 5:1 range)
Step-up/step-down range: up to 5:1
Output power: up to 300 W

Conversion efficiency: up to 98%
Frequency: up to 2 MHz

23



“Full VIC” PRM Capabilities

ZV'S buck / boost regulator

Input voltage: 1.5-400 V (up to 5:1 range)
Step-up/step-down range: up to 5:1
Output power: up to 300 W

Conversion efficiency: up to 98%
Frequency: up to 2 MHz
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Factorized Power

PRM - ZVS Buck/Boost Engine

+in O <> +0ut
i+ L
— Y Y Y _g
[« -
v
Buck Boost Gontrol

A

« ZV'S buck-boost topology and control architecture

* High frequency operation

Patents and Patents Pending
25



Factorized Power

PRM Conduction Phases

 Power cycle comprises
four conduction phases Hn O OO +0ut

1. Input phase

v

Proprietary
Buck-Boost Control

)

Patents and Patents Pending
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Factorized Power

PRM Conduction Phases

 Power cycle comprises
four conduction phases Hn O OO +0ut

1. Input phase

2. Input-output phase

\

v

Proprietary
Buck-Boost Control

)

Patents and Patents Pending
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Factorized Power

PRM Conduction Phases

 Power cycle comprises
four conduction phases Hn O OO +0ut

1. Input phase

2. Input-output phase -
v

3. Free-wheeling phase

Proprietary
Buck-Boost Control

)

Patents and Patents Pending
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Factorized Power

PRM Conduction Phases

 Power cycle comprises

four conduction phases Hn O O +0ut

1. Input phase

2. Input-output phase

3. Free-wheeling phase / _
1 skt ool
4. Clamp phase ~ 1

Patents and Patents Pending
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Factorized Power

Vin < Vout

A #1
Input phase Vi o
v) _
A
I
Proprietary (A)
Buck-Boost Control
A
—

0 200 400 600 800 1000

Time (ns)

Patents and Patents Pending
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Factorized Power

Vin < Vout

Q3 Zvs
traniition
A #1

ZVS transition Vi o
+ Qut V) -

IL
Proprietary (A)
Buck-Boost Control
A

| | | F
0 200 400 600 800 1000

Time (ns)

Patents and Patents Pending
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Factorized Power

Vin < Vout

Input-output phase
— — =

Y

Proprietary
Buck-Boost Control

A

A #1 #2
Vin

VL
(V)

Yin - Yout

0 200 400 600 800 1000

Time (ns)

Patents and Patents Pending
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Factorized Power

Vin < Vout

02 ZVs
transition
A #1 #2 *
ZVS transition Vi o
(v) _
Yin - Yout

Buck-Boost Control

A

0 200 400 600 800 1000

Time (ns)

Patents and Patents Pending
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Factorized Power

Vin < Vout

A #1 #2 #3
Free-wheeling phase Vi o
<> +O0ut v .
m Vin - Vout

-Vout o
OFF|
Q4

Y

Proprietary
Buck-Boost Control

A

0 200 400 600 800 1000

Time (ns)

Patents and Patents Pending
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Factorized Power

Vin < Vout

Q4 ZV$S
transition
A #1 #2 #3 *
ZVS transition Vi o
+In + Qut V) -
OFF Vin - Vout
Q3
- . ; J.'u“t -‘?L
ON] f :
; Q4 ZVS

Proprietary
Buck-Boost Control

A

0 200 400 600 800 1000

Time (ns)

Patents and Patents Pending
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Factorized Power

Vin < Vout

A #1 #2 #3| [#4
Clamp phase Vi o
+In + Qut V) -
OFF OFF| Vin - Vout
-Vout b
ON ON

Proprietary
Buck-Boost Control

A

200 400 600

Time (ns)

Patents and Patents Pending
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Factorized Power

Q1 Zvs
transition
i ¥
#1 #2 #3) 1#4
ZVS transition Vi o
V)
-
Vin - Vout
Vout "?L

Buck-Boost Control

A

200 400 600

Time (ns)

Patents and Patents Pending
37



Factorized Power

A #1 #2 #3)#4{#
Input phase Vi o =
V)
>
Vin - Vout
-Vout ban

Proprietary
Buck-Boost Control

A

200 400 600

Time (ns)

Patents and Patents Pending
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Factorized Power

Input phase

Proprietary
Buck-Boost Control

A

Vin = Vout

Vi
(V)

Patents and Patents Pending

A

#1
Vin

200

T T T T -
400 600 800 1000

Time (ns)
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Factorized Power

Vin = Vout

Q3 Zvs
lmniitinn

ZVS transition V
+Qut V) -~

Proprietary
Buck-Boost Control

A

T T T T -
0 200 400 600 800 1000

Time (ns)

Patents and Patents Pending
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Factorized Power

Vin = Vout

S #2
Input-output phase V[
+In - + Qut V) -
ON| ON.
OFF 4
Q4
! .
Proprietary {A]
Buck-Boost Control
X

T
0 200 400 600 800 1000

Time (ns)

Patents and Patents Pending
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Factorized Power

Vin = Vout

Q2 Zvs
tmnﬁ*ition

S #2
ZVS transition V

+In v sout v .

102 ZVS

! g
Proprietary {A]
Buck-Boost Control
A

T T -
0 200 400 600 800 1000

Time (ns)

Patents and Patents Pending
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Factorized Power

Vin = Vout

Vin

Free-wheeling phase '/
— +Out (v)

Y

Proprietary
Buck-Boost Control

A

0 200 400 600 800 1000

Time (ns)

Patents and Patents Pending
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Factorized Power

Vin = Vout

04 ZVs
traniition

A #1 #2 #3
ZVS transition V

+Qut V) -~

F

o
T
iy
II

@

F

ON . }

Q4 ZVS
I
Proprietary {A]
Buck-Boost Control . Negative
A Current

0 200 400 600 800 1000

Time (ns)

Patents and Patents Pending
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Factorized Power

Vin

Clamp phase VL

Y

Proprietary
Buck-Boost Control

A

0 200 400 600 800 [ 1000

Time (ns)

Patents and Patents Pending
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Factorized Power

Vin = Vout

Q1 Zvs
transition
A #1 #2 #3 #4+
ZVS transition V
all =N +Out V) -

Proprietary
Buck-Boost Control

A

T
0 200 400 600 B0OO [ 1000

Time (ns)

Patents and Patents Pending
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Factorized Power

Vin

Input phase VL —
V)

Proprietary
Buck-Boost Control

A

0 200 400 600 800 [ 1000

Time (ns)

Patents and Patents Pending
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Factorized Power

Input phase

Proprietary
Buck-Boost Control

A

Vin > Vout

Vi
V)

Patents and Patents Pending

"'#1
Vin
-~
i
I I I Ll L h—
0 200 400 600 800 1000

Time (ns)
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Factorized Power

Vin > Vout

Q3 ZVs
transition

"'#1

ZVS transition v [V
+Qut V) -

IL
Proprietary (A)
Buck-Boost Control
A

I I I i L] F
0 200 400 600 800 1000

Time (ns)

Patents and Patents Pending
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Factorized Power

A #1 #2
Input-output phase vy |V
+|I‘I - » + Out (V) Vin - Vout .
ON| ON
OFF A
Q4
y I
Proprietary (A)
Buck-Boost Control
A
—

0 200 400 600 800 1000

Time (ns)

Patents and Patents Pending
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Factorized Power

Vin > Vout

02 Zvs
transition
A # #2 '
ZVS transition v [V
(V) Vin - Vout || _
A
IL
(R)
Buck-Boost Control
A
T -

0 200 400 600 800 1000

Time (ns)

Patents and Patents Pending
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Factorized Power

Vin > Vout

Free-wheeling phase v [
— +0ut (v) Vin - Vout ||

m Vout

Y

Proprietary
Buck-Boost Control

A

0 200 400 600 800 1000

Time (ns)

Patents and Patents Pending
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Factorized Power

Vin > Vout

04 ZVS
transition
i i
#1 #2 #3
ZVS transition v [
+In +0ut (v) Vin - Vout L .
OFF
Vo
Q3 ’
ON . }

Q4 ZVS

Proprietary
Buck-Boost Control

A

Negative
Current

0 200 400 600 800 1000

Time (ns)

Patents and Patents Pending
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Factorized Power

Clamp phase v [
+Out V) | [ v vour | _

Vout

Proprietary
Buck-Boost Control

A

0 200 400 600 800 [ 1000

Time (ns)

Patents and Patents Pending
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Factorized Power

ZVS transition

Proprietary
Buck-Boost Control

A

a1 Zvs
transition
i T
#1 #2 #3 #4
VL Vin
v Vin - Vout L
+ Qut ) S -
“Vout
ON A
|
|
—
0 200 400 600 800 [ 1000
Current

Time (ns)

Patents and Patents Pending
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Factorized Power




“Full VIC” VTM Capabilities

ZCS [ ZVS Sine Amplitude Converter (SAC)
Input voltage: 0-400 V (up to 2:1 range)
Output voltage: 0-400 V

Transformation ratio (K): 1/200 to 200

Output current or power: up to 100 A or 300 W
Conversion efficiency: up to 97%

Conversion frequency: up to 4 MHz, fixed

57



Factorized Power

*h & —< > +Out
Cin " ~— Cout
Frequency
Lock/Control | T2
- —> - Out

T1 = power transformer
T2 = gate drive transformer

* Primary “Engine” is a Low Q oscillator formed by CRES and the
leakage inductance of T1

Patents and Patents Pending
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Factorized Power

— +0ut

+In T

1 M qw 1 M 2 ——Cour

Cin "

Frequency
Lock/Control | T2

.
-In¢ . T 2 1 T 2 > - Out
T1 = power transformer
T2 = gate drive transformer

* The Low Q oscillator is driven by an H-bridge

Patents and Patents Pending
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Factorized Power

*h & * —< + Out
a1 . 03
1 2
1= —|
— S— |
T2 TI)_;
2 CRES —
Cw—_ J\M P(VWT!YNIQ ~— Court
a2 2<Q<10 a4
2| L
o —1
Frequency — —
Lock/Control | T2 T2 T2
s .
1
_IneS . T 2 <> Out

T1 = power transformer
T2 = gate drive transformer

* In this particular example, secondary rectification is also performed
using an H-bridge

Patents and Patents Pending
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Factorized Power

" | ITI
* .
01 . a3 01 ¢ 023
1| 2 1 2

J . T 1 2 1l.| m o, v L *
IN___ .,M—rel =YYy —_Cour gbnml
02 2<0<10 04 Qz2 | =P 024
2 |1 | — 11 2| 1
J=— —| I=— —=1
Lock/Control | T2 T2 T2 T2 T2
. & * -
- I | 2 1 1 2 |~
T1 = power transformer = Qut

T2 = gate drive transformer

* Load current drives the Low Q oscillator by pulling primary current

Patents and Patents Pending
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Factorized Power

}
i S
. A —
us us 16.00 us 18,00 us 96

* The amplitude of the Low Q oscillator is proportional to the load
current as reflected back to the primary

Patents and Patents Pending
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Factorized Power

VTM / BCM Level 2 Behavioral Model

48V 1015V 100 AVTIM

015 nH

LlN =20nH
— CYTY YT
+
Cin
Win

1fan » lout

0.6 m2
sz » Vin

Rout Lout =0.8 nH
M Y Y g
1.0 mi2 +
RCour
TOu

Cour 306 puF
Vourt

Patents and Patents Pending
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Factorized Power

VTM /| BCM SAC Control

+In T »

+— > +Out
a1 . 03 an
- - —1 |2
— — | — —1
T2 2 12 T2
2 Cres 1 2 1
Cin___ J\/I.lv{" F'NI]Y'\Z. 1,2 ~——Cout
02 2<0<10 04 022 024
2 | I EEE: R
o —1 —1
— L1 1
12 Tz}} g—{m n}_;
- & L
1
-n& * T z 1 2 — > - Out

T1 = power transformer
T2 = gate drive transformer

* The controller locks to the natural frequency of the Low Q oscillator and
turns all switches ON and OFF under ZCS/ZVS conditions

* Conduction states result in a 100% effective duty cycle

« Control circuitry recycles the gate drive energy from each pair of switches

Patents and Patents Pending 64



Factorized Power

VTM /| BCM SAC Control

*Ih 5 * +—< +Out
a1 . 03 an
H i N K —i [
— —1 — —1
T2 2 T2 2
2 Cres 1 2 1
CIn__ wvv*&"‘ 1y F'NI]Y'\Z. 1 A2 —— Cour
2 2<0<10 4 022 024
I —1
L1 L1
TE}_} g—{rz:l n}_;
- &
- ! ! 2 1 1 2

T1 = power transformer
T2 = gate drive transformer

« Control Servo locks to Sine Amplitude Converter resonant frequency
and phase, compensating for power train parametric variabilities
« Soft start, inrush control and Adaptive Loop Compensation of Rout

Patents and Patents Pending
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Factorized Power

VTM Operation Phases

L
+Vout
V14
sec.
-.
Phase 1
#n >
A
Frequency
Lock/Control
=In >
T1 = power transformer
T2 = gate drive transformer
] I I -

0 150 300 450 600 750

Patents and Patents Pending
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Factorized Power

VTM Operation Phases

VS
lrans*itiun
L -
+Vout
V14
sec.
-.
ZVS transition
+Hin >+ Qut i
! A
12
) —
g Q
GH) ¢
L
F 6
LockiContro b,
e ooz ] 2 - ot
T1 = power transformer
T2 = gate drive transformer
e

Patents and Patents Pending
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Factorized Power

VTM Operation Phases

VS
transition
L #2
+Vout
V14
sec.
-.
Phase 2
i ¢ | -Vout
A
Cn_
Fr
LockiContre | 2
—In ¢y
T1 = power transformer
T2 = gate drive transformer

0 150 300 450 600 750

Time (ns)

Patents and Patents Pending
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Factorized Power

VTM Operation Phases

VS
lraniitian
L - #2
+Vout
V14
sec.
-.
ZV'S transition
*In > p—o s + Ouit i -Vout
A
Cin— — Cour
Fr
LockiContre | 2
-In < —" - Out
T1 = power transformer
T2 = gate drive transformer

0 150 300 450 600 750

Time (ns)

Patents and Patents Pending
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Factorized Power

VTM Operation Phases

IVS
transition
L #2 ”l
+Vout
V14
sec.
-.
Phase 1
in & | -Vout
A
Frequency
Lock/Control
=In >
T1 = power transformer
T2 = gate drive transformer

0 150 300 450 600 750

Time (ns)

Patents and Patents Pending
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* Bi-directional power transfer

. Flexibility of topology OMN] YR,

» Common-mode cancellation |

71



Factorized Power

Superior System Performance

Higher power/current density

— Power conversion building blocks occupy less space
Higher efficiency

— Power conversion building blocks generate less heat
Faster transient response

— Overcomes processor/power technology gap
Lower input and output noise

— Reduced filtering frees up board space

72



Factorized Power

SAC: Highest Power Density

High fixed switching frequency (up to 4 MHz)
— Reduces size of all reactive components
Zero-current & zero-voltage switching (ZCS/ZVS)
— Reduces stresses, losses and heat
No serial energy storage
— No output inductor
100% effective transformation duty cycle
— Efficient power train utilization

73



Factorized Power

16 A /80 W niPOL 100 A /300 W Vel Chip

* Surface mount * Surface mount
« Efficiency: 12 Vinto 1.2 Vout = 83% « Efficiency: 48 Vinto 1.2 Vout = 91%
+ 1.30"x 0.53" x 0.37" « 1.26 " x 0.85" x 0.24"
(33,0 mm x 13,5 mm x 9,3 mm) (32,0 mm x 21,5 mm x 6,0 mm)
* Area: 0.7 in? (4,5 cm?) * Area: 1.1in? (6,9 cm?)

* Volume: 0.25in3 (4,1 cm?3) ¢ Volume: 0.26 in3 (4,1 cm?3)
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Factorized Power

16 A /80 W niPOL 100 A /300 W Vel Chip

320 W/in3 > 1,095 W/in3
64 Alin3 > 365 Alin3
114 W/in2 > 270 W/in?
23 Alin? > 91 Alin?
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Factorized Power

SAC: Highest Efficiency

ZCS [ ZVS
— No switching losses
Low Q transformer
— Reduced winding losses
No serial energy storage
— No inductor losses
100% effective transformation duty cycle
— Efficient power train utilization

76



Factorized Power

Efficiency

Efficiency (%)

94
92

90

&

82

Efficiency vs. OQutput Current

K=1/32 VTM
_—
\-.._\
/
Ui
/
20 40 60 80 100

QOutput Current (A)

1.5 Voul
1.2 Vout

1.0 Vout

0.8 Vout
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Factorized Power

Efficiency

Efficiency (%)

98

97
96
95

93
92
23
90

VTM/BCM Efficiency vs. Output Power

e
= K=156
H

K=1/4

[ —

50

100 150 200 250 300
Output Power (W)
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Factorized Power

SAC: Fastest Dynamic Response

* No serial energy storage & Low Q transformer
— No current inertia & quick settling
*High fixed switching frequency (up to 4 MHz)
— Minimal cycle-to-cycle delay
* Load independent control
— No lag due to control loop
« Bi-directional power processing
— Load dump energy recycled to input
+ Capacitance multiplication
— High effective POL capacitance: Cout g ~ Cins(1/K)?+ Cout

79



Factorized Power

Dynamic Response
K=132VIM@ Vout=1V

Tek Single S([aq 50.0MS/s ] Tek Single St[aq 50.0MS/s .
T T ]
:I T Itl T T : :I T Itl T LY I:
14 = : : : : ] 1+ ]
2 e : 2 o :
2 e sl ] B e T N

h1 T00mva4Ey sié‘ 200mv = M 1.00us Ct12J" 212my

)

0-100 A load step with 100 pF input capacitance 100 - 0 A load step with 100 pF input capacitance
and NO output capacitance and NO output capacitance
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SAC: Lowest Noise

« ZCS/ZVS
— Order of magnitude reduction in dl/dt
— Significant reduction in dV/dt
*  Symmetric power train
— Cancellation of common-mode noise
» High fixed switching frequency (up to 4 MHz)
— Easy to filter
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Factorized Power

Output Noise
K=132VIM@ 1.0V & 100 A

Tek KR 100MS/s 649 Acqs Tek 100MS/5 30 Acgs
o
| |

..|.|.|.E
1141

e T T A I RN TR R

R R R R I R PR PR R PP

I T T

Nl ol el e e el

e e e e e e e e e e e e ammoa e e g a e e e a s e s

ﬂh‘ 50.0mVaE M 500ns CH] hY —4my .0m ns =m

Output voltage ripple @ 100 A Output voltage ripple @ 100 A
with NO bypass capacitance with 200 uF ceramic bypass capacitance and

20 nH distribution inductance
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The Flexibility of FPA

+ Most contemporary power systems are a hybrid of
centralized, distributed and intermediate bus

« Factorized power building blocks support existing power
distribution architectures

83



Surface mount BGA package
for in-board mounting

Surface mount J-Lead package
for on-board mounting

W stssiesscasas

Surface mount extended J-Lead
package for on-board mounting
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Factorized Power

Intermediate Bus

« VTMs function as intermediate bus converters (BCMs)
+ More power and more performance in less space
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Distributed Power
* A PRM and VTM pair can replace bricks

* Superior performance at less cost

86



. L M.

VICBrick — Up to 100 A in a 0.25" High
Quarter-brick Package
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Factorized Power

Centralized Power

* PRMs can be remotely located

* Low current factorized buses can be easily routed
throughout the system

18V

O Central O— Central
Power Power Ve,
o—|  Supply ™" Oo—

-12V

Supply v,
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From the Wall Plug
to the Processor Core

150 — 200 Watt FPA Solution

89



Factorized Power

Conventional Power System Architecture
12 V Intermediate Bus

12V 12V VR0
Multi-phase | P4

Buck . Processor
Converter :

Piies 29 W

86% efficiency

P,..=14 W
87% efficiency

diss

Total Power ~ 66 W
(HDD, USB, I/0, DDR, other)
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AC Front-end _

=29 W
86% efficiency

P

diss

Total Power ~ 66 W
(HDD, USB, 1/0, DDR, other)
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Factorized Power

.
N

e Vicor
- AC Front-end

P

=7W
93% efficiency

diss

P,..=17W
91% efficiency

diss

Total Power ~ 66 W
(HDD, USB, I/O, DDR, other)
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Factorized Power

Comparative Benchmark

Conventional 12 V Input Advanced
Pentium 4 PRM/VTM Processor
Power System Sub-System FPA System
Front-end
Efficiency 86% 86% 91%
Power dissipation 18 W 18 W 11W
Power density 6.6 W/in3 6.6 W/in3 25 W/in3
POL (processor)
Efficiency (1.2v @ 80 A) 87% 89% 93%
Power dissipation 14 W 12W TW
Power density 23 W/in3 59 W/in3 120 W/in3
Total (without auxiliary outputs)
Efficiency 5% 7% 85%
Power dissipation 32W 30w 18 W
Power density 3.2 W/in3 3.3 W/in3 11.5 W/in3




Power Architecture Evolution

Centralized Power (CPA)
r Distributed Power (DPA) 1

Intermediate Bus (IBA) Factorized Power (FPA)

Which is the Future?
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Factorized Power

Power Architecture Evolution
Centralized Power (CPA)

r Distributed Power (DPA) 1

Intermediate Bus (IBA) Factorized Power (FPA)
™
4
OHMS LAW & FaSt!
VANISHING DUTY CYCLE ..
Limited Applicability Efficient!

Dense!
From the Wall Plug... to the Processor Corel!

95



Factorized Power

FPA & Vel Chips

Power Paradigm of the Future

Questions?
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