High density power conversion

Modular solutions for your power system

High-performance power modules

Innovating power

Modular power delivery demolishes traditional discrete solution

Compact, lightweight and power dense

Vicor power modules are up to 5x the density of other solutions and weigh as little as 674mg.

Efficient with simplified thermal management

The profile of Vicor modules allows for uniform and predictable heat dissipation that is isolated to one spot, rather than scattered throughout the design.

Tested and ready to implement

The design process advances much quicker when it isn't necessary to repeatedly test and qualify the design.

vicorpower.com/vicor-power-modules

Anatomy of a Vicor power module

Extended variety of input and output voltages available

Hundreds of components are tightly arranged within a miniature footprint

Isolation, regulation, conversion and transformation integrated in different combinations

Vicor power modules are used to create effective power architecture: power delivery networks

Easier and simpler than other solutions

Unlike complex discrete solutions and inflexible "silver box" power systems, a power delivery network using power modules is quick and easy to design and implement.

Easily adapt to changing requirements

Accommodating new loads — or changes in power needs in a design — is easily accomplished by replacing or adding modules.

Significantly shorter time-to-market

Our customers have told us the modular approach can take less than half the time than designing and testing a discrete solution.

vicorpower.com/power-delivery-networks

Power delivery networks for forward thinking industries

Redefining automotive power delivery

vicorpower.com/auto

Power solutions that maximize AI, HPC and data center computing performance vicorpower.com/computing

Increasing payload capability and flight times of commercial UAVs

vicorpower.com/uav

High speed, low latency network coverage for the world vicorpower.com/leo-satellite

Solving SWaP-C power challenges for MIL-COTS vicorpower.com/defense-aero

Increase run time and functionality with highly efficient power delivery vicorpower.com/robotics

Powering modern rail systems vicorpower.com/rail

Bolstering all phases of the battery lifecycle vicorpower.com/battery

Increasing throughput for automated test equipment vicorpower.com/testandmeasurement

Modular solutions for your from source to point-of-load

power system

High power converters for all standard industry input voltages

The DCM ChiP is an isolated, regulated DC-DC converter, operating from an unregulated, wide range input to generate an isolated output. With its high frequency zero-voltage switching (ZVS) topology, DCMs consistently deliver high efficiency across their specified input line range. Modular DCM converters used independently or with downstream point-of-load (PoL) products support efficient power distribution, providing superior power system performance and connectivity from a variety of unregulated power sources to the point of load. Options include a family of DCMs with tighter output voltage regulation of ± 1 %. The DCM VIA module provides a higher level of functionality with integrated EMI filtering, tight output voltage regulation and a secondary-referenced control interface.

Features and benefits

Up to 600W, 43.5A continuous

Up to 93%

peak efficiency

Up to 1244W/in³

power density

OV, OC, UV, short circuit & thermal protection

Input voltage rang	e:	
9.0 – 50.0V	60.0 - 154.0V	
9.0 – 75.0V	160.0 - 420.0V	
14.0 - 72.0V	180.0 - 400.0V	
16.0 - 50.0V	120.0 - 420.0V	
18.0 - 36.0V	200.0 - 378.0V	
36.0 - 75.0V	180.0 - 420.0V	
43.0 – 154.0V	200.0 - 420.0V	
Output voltage rar	ige:	
3.5 – 5.5V	9.0 – 16.5V	21.0 - 30.8V
4.0 – 5.5V	11.25 – 16.5V	22.0 - 30.8V
7.2 – 13.2V	14.4 - 26.4V	22.0 - 36.0V
9.0 – 13.2V	18.0 – 26.4V	21.6 - 39.6V
8.3 – 15.2V	21.6 – 26.4V	28.8 - 52.8V
11.5 – 15.5V	16.8 – 30.8V	36.0 - 52.8V

Power:	
2322 ChiP: Up to 120W	
3623 ChiP: Up to 320W	
4623 ChiP: Up to 600W	
3414 VIA: Up to 320W	
3714 VIA: Up to 600W	
5614 VIA: Up to 1300W	
Dimensions:	
2322 ChiP: 24.8 x 22.8 x 7.2mm	
3623 ChiP: 38.7 x 22.8 x 7.2mm	
4623 ChiP: 47.9 x 22.8 x 7.2mm	
4623 ChiP: 47.9 x 22.8 x 7.2mm 3414 VIA: 85.9 x 35.5 x 9.4mm	
3414 VIA: 85.9 x 35.5 x 9.4mm	

A complete list of DCMs are available at **vicorpower.com/dcm**

Intermediate bus converters

Bus converters are high-density, high-efficiency DC-DC converter modules available in a ChiP or VIA (Vicor Integrated Adapter) package, which simplifies cooling as well as providing integrated PMBus[™] control, EMI filtering and transient protection. 800V to 48V inputs with various K factors suit a wide range of applications and markets. High-voltage BCM ChiPs are able to reach peak efficiencies of 98% and achieve power densities up to 2,400W/in³. These flexible modules can be easily paralleled into high power arrays and outputs can be put in series to achieve a higher output voltage. BCMs are inherently bidirectional and also allow designers to reduce the amount of bulk capacitance needed at the load by effectively "reflecting" the capacitance across the module based on the specified K factor.

Features and benefits

High efficiency of up to 98% High power

density of

up to 2,400W/in³

Parallel capability for higher power arrays

Bidirectional capability

Input voltage range	e:	
36.0 - 60.0V	260.0 - 410.0V	
38.0 – 55.0V	330.0 - 365.0V	
200.0 – 330.0V	360.0 - 400.0V	
200.0 - 400.0V	400.0 - 700.0V	
240.0 - 330.0V	500.0 - 800.0V	
Output voltage rar	ige:	
2.4 – 3.4V	10.3 - 11.4V	30.0 - 41.2V
3.2 – 4.6V	11.2 – 12.5V	31.1 – 51.2V
4.8 – 6.9V	11.8 - 13.0V	31.2 - 50.0V
6.0 - 10.0V	12.7 – 18.3V	32.5 – 51.2V
6.3 – 9.2V	16.3 – 25.6V	32.5 – 51.3V
7.6 – 11.0V	19.0 – 27.5V	33.4 – 55.1V
8.1 – 12.8V	25.0 – 43.7V	38.0 – 55.0V
9.0 – 15.0V	25.0 – 50.0V	41.3 - 45.6V
9.5 – 13.8V	25.3 – 36.7V	45.0 - 50.0V

Current:	
Half Chip: Up to 10A	
Full Chip: Up to 80A	
2361 ChiP: Up to 150A	
6123 ChiP: Up to 35A	
4414 VIA: Up to 125A	
6135 CM-ChiP: Up to 65A	
Dimensions:	
Dimensions: Half Chip: 22.0 x 16.5 x 6.7mm	
Half Chip: 22.0 x 16.5 x 6.7mm	
Half Chip: 22.0 x 16.5 x 6.7mm Full Chip: 32.5 x 22.0 x 6.7mm	
Half Chip: 22.0 x 16.5 x 6.7mm Full Chip: 32.5 x 22.0 x 6.7mm 6123 ChiP: 63.3 x 22.8 x 7.2mm	
Half Chip: 22.0 x 16.5 x 6.7mm Full Chip: 32.5 x 22.0 x 6.7mm 6123 ChiP: 63.3 x 22.8 x 7.2mm 4414 VIA: 110.6 x 35.5 x 9.4mm	

A complete list of BCMs are available at **vicorpower.com/bcm**

NBM[™] non-isolated fixed-ratio bus converter modules

Bidirectional power converters

The Vicor NBM[™], utilizing a Sine Amplitude Converter (SAC[®]) ZCS/ZVS topology, provides nonisolated bidirectional voltage conversion in a fixed-ratio manner. The NBM has an associated K factor which determines the transformation voltage. In step-down mode, when a source is applied to the high side, the NBM will provide a voltage to the low side that is equivalent to the high-side voltage scaled down by the K factor. In step-up mode, when a source is applied to the low side, the NBM will deliver a voltage to the high side equivalent to the low-side voltage scaled up by the K factor.

Features and benefits

High efficiency of over 98%

$\left(\right)$	$\overline{}$
—(^{mm}	<u>htti)</u> —

High power density of up to 3,600W/in³

Parallel operation

for multi-kW

Bidirectional capability

Input voltage range:	Current:
36.0 - 46.0V	2317 SM-ChiP: Up to 80A
36.0 – 60.0V	6123 ChiP: Up to 170A
40.0 – 60.0V	Dimensions:
Output voltage range:	2317 SM-ChiP: 22.8 x 17.3 x 5.2mm
12.0 – 15.3V	6123 ChiP: 61.0 x 25.1 x 7.2mm
7.2 – 12.0V	A complete list of NBMs are available at
10.0 – 15.0V	vicorpower.com/nbm

DCM[™] non-isolated regulated DC-DC converter modules

High-density power modules for bridging 48V and legacy 12V power buses

Vicor non-isolated, regulated DC-DC converter modules operate from a 40 – 60V input, generate a regulated 12V output, and are adjustable from 10V to 12.5V. They support up to 2000W and can be paralleled to attain higher power levels. They are complete converter solutions requiring minimal external components yielding even higher power density for the complete power delivery network. The DCM has established a new benchmark for power density with a low-height, surface mount Converter housed in Package (SM ChiP) resulting in a 6x reduction in size over a conventional converter. With Vicor proprietary high frequency switching technology, these modules deliver high efficiency over all line and load conditions. They can be used to establish a 12V bus or used with legacy, downstream point-of-load (PoL) converters, and are ideally suited for bridging 48V and legacy 12V power buses in industrial, aerospace and defense, and high performance computing applications.

Features and benefits

High efficiency of up to 96%

High power density

PMBus[®]

compatible telemetry

Input	voltage	range:

40.0 - 60.0V

Output voltage range:

10.0 - 12.5V

Power:

3717 SM-ChiP: Up to 1000W

Upcoming 3735 SM-ChiP: Up to 2000W

Dimensions

3717 SM-ChiP: 36.7 x 17.3 x 5.2mm

Upcoming 3735 SM-ChiP: 36.7 x 35.4 x 5.2mm

vicorpower.com/dcm48to12V

ZVS buck switching non-isolated DC-DC regulators

12V, 24V or 48V direct to PoL regulators

PI33/PI34/PI35xx regulators offer board-level designers maximum power density and flexibility for high-efficiency point-of-load DC-DC regulation. High performance zero-voltage switching (ZVS) topology increases point-of-load performance, providing best-in-class efficiency up to 98%. They are highly integrated with control circuitry, power semiconductors and support components in a high density System in Package (SiP). It can also be configured to operate in constant-current mode with -55°C to +125°C operation.

Features and benefits

Wide operating range

Simple to use;

fast development

High efficiency

>96%

Flexible and rich feature set

Input voltage range:	:
8.0 - 18.0V	17.4 – 36.0V
8.0 – 36.0V	20.4 - 36.0V
11.0 – 36.0V	30.0 - 60.0V
14.0 - 42.0V	36.0 - 60.0V
Output voltage rang	je:
2.2 – 4.0V	4.0 - 6.5V
2.2 - 4.0V 2.3 - 4.1V	4.0 - 6.5V 6.5 - 13.0V

Current:	
10.0 x 10.0mm SiP: Up to 10A	
10.0 x 14.0mm SiP: Up to 22A	
Dimensions:	
LGA SiP: 10.0 x 10.0 x 2.6mm	
LGA SiP: 14.0 x 10.0 x 2.6mm	

A complete list of buck regulators are available at **vicorpower.com/buck**

ZVS buck-boost switching non-isolated DC-DC regulators

Wide range direct to PoL regulators

The PI37xx is a series of high-efficiency regulators integrating controller, power switches and support components which require only an external inductor and a minimal number of capacitors to form a complete DC-DC regulator. The high-switching frequency reduces the size of the external filtering components, improves power density and enables very fast dynamic response to line and load transients. The PI37xx sustains high switching frequency up to the rated input voltage without sacrificing efficiency and supports large DC-DC conversion ratios. The device can also be configured to operate in constant-current mode.

Input voltage range:	Power:
8.0-60.0V	Up to 150W
21.0 - 60.0V	Dimensions:
38.0 - 60.0V	LGA SiP: 10.0 x 10.0 x 2.5mm
Output voltage range:	LGA SiP: 10.0 x 14.0 x 2.5mm
10.0 – 50.0V	A complete list of buck-boost-regulators are
21.0 – 36.0V	available at vicorpower.com/buck-boost
28.0 - 54.0V	
36.0 - 54.0V	

An easy solution for generating complete power systems

VICOR

Power System Designer

Show me pricing	for 100 power systems		
Enter your	power requiremen	ts	
AC DC	400V _{pc} min input	400V _{pc} nom input	400V _{pc} max input
	Enter optional output name		lated Fixed Ratio
	Enter min output voltage	48V nom output	Enter max output voltage
	Output return: Output 1		
Remove	Isolation required Isola	tion not required Regu	lated Fixed Ratio
		24V nom output	Enter max output voltage
	200W Power		
	Output return: Output 1		
ADD ANOTHE	R OUTPUT UPDATE SOL	JTIONS Reset	

Recommended solutions

Figure of merit	Component quantity	Total footprint (cm ²)	Front-end footprint (cm ²)	Point-of-load footprint (cm ²)	Total efficiency (%)	Front-end efficiency (%)	Point-of-load efficiency (%)	Price each fo 100 pouve system
Option 1								
Dest Fit Lowest Price Smallest Pootprint SELECT	4	11	7	4	93.0	96.1	96.8	\$107 to \$123
Option 2								
Highest Efficiency	4	19	14	4	93.4	95.6	44.5	\$244.04

Just enter a few specs to design your next power system

Designing your power system in a single location — up to 75% faster than traditional methods — is as easy as entering your input and output power as well as your basic system requirements. The Power System Designer is one of the Vicor web-based tools that makes it easy for you to build flexible, efficient and costeffective power systems that get you to market faster.

- Instant performance analysis for recommended solutions
- Access an infinite number of products and technical specs
- Evaluate power chains electrically and mechanically
- Prioritize solutions by efficiency, component count, cost, footprint and recommended best fit
- Save, export and share a final BOM or power system

Start your next design at www.vicorpower.com/psd

©2019-25 Vicor Corporation. All rights reserved. The Vicor name is a registered trademark of Vicor Corporation. All other trademarks, product names, logos and brands are property of their respective owners. Rev 2.0 3/2025