

Increased transient response in a vehicle enabling removal of the 12V Battery

YK Choi, Sr. FAE, APAC Automotive May 24th, 2023

Eliminating the 12V battery with the use of a Sine Amplitude Converter

to create a 12V power from the high voltage vehicle battery

The 12V lead-acid battery will be banned!

- The 12V lead-acid battery in countries like Norway and Netherlands have expressed bans for ICE vehicles from 2025, even Germany vowing to wean itself off its ICE addiction by 2030
- The battery is a warranty issue
- The lead-acid battery is heavy and has no intelligence on its cycle time or health

The 12V battery benefits

- Alternate reservoir of energy not dependent on upstream electronics status
- Not dependent on the High Voltage Battery

Why not replace the Battery with a Sine Amplitude Converter?

Important perimeters

- Dynamic response
- Redundancy
- Vibration
- Feedback or communication to component

BCM under test

Outputs and Type	1, Isolated
Voltage - Output	47.5V
Current - Output	25.7A
Voltage - Input	260V ~ 410V
Regulator Topology	Buck
Frequency - Switching	1.18MHz
Board Type	Fully Populated
Supplied Contents	Board(s)
Utilized IC / Part	BCM380y475x1K2A30
Power - Output	1.2 kW

https://www.digikey.com/en/products/detail/vicorcorporation/BCD380P475T1K2A30/4740999

VICOR

BCM6123 transient response

Load Bank limits the di/dt $\Delta I_{OUT} = 24.4A - 0.68A = 23.72A$ $\Delta Time = 16\mu sec = 0.016m sec$ di/dt = 1,482.5A/msec

 V_{IN} at 50V/div and V_{OUT} at 1V/div

BCM6123 with load switching 0.68A to 24.4A

Load bank limits the di/dt $\Delta V_{IN} = 1.063V$ $\Delta V_{OUT} = 0.843 V$ K = 1/8Input reflected to V_{OUT} 1.063V/8 = 0.133VVoltage drop 0.843V - 0.133V = 0.710VVoltage drop is the BCM + cables

 V_{IN} and V_{OUT} at same scale of 1V/div

VICOR

NBM2317 48V to 12V bus converter at 1kW

NBM2317 in boost mode $12V \rightarrow 48V$

 $V_{IN} = 12V$ $V_{OUT} = 48V$ $V_{IN} \text{ and } V_{OUT} \text{ is superimposed}$ Load step 0 to 12A Voltage is AC coupled to see the dip

The next slides are

 $V_{IN} = 48V$ $V_{OUT} = 12V$ $48V \rightarrow 12V$

Step down/buck

Transient testing with electronic load bank

NBM2317 in buck mode $48V \rightarrow 12V$

Vin is 48V Vout is 12V Load 0 to 60A Electronic Load

Yellow = 48V = Vin Blue = 12V = Vout Purple = Enable Green = lout at 10A/div.

Load transient test 12A to 120A 54V bus load applied

- Slew rate ≈ 3A/us
- NBM2317
- V_{IN} = 12V
- V_{OUT} = 54V
- 2up array step transient test
- (DC coupled voltage probes)

 $\begin{array}{lll} CH1 - V_{HI} : \ 1V/div \ (DC) & CH3 - I_{O1} : \ 20A/div \ (DC) & Timebase \\ CH2 - V_{LO} : \ 1V/div \ (DC) & CH4 - I_{O2} : \ 20A/div \ (DC) & 100 \mu s/div \end{array}$

Load transient test 12A to 120A 54V bus load removed

- Slew rate ≈ 3A/us
- NBM2317
- V_{IN} = 12V
- V_{OUT} = 54V
- 2up array step transient test
- (DC coupled voltage probes)

 $\begin{array}{lll} CH1 - V_{HI} : \ 1V/div \ (DC) & CH3 - I_{O1} : \ 20A/div \ (DC) & Timebase \\ CH2 - V_{LO} : \ 1V/div \ (DC) & CH4 - I_{O2} : \ 20A/div \ (DC) & 100 \mu s/div \end{array}$

Redundancy

Provide three separate channels of power from the high-voltage battery

- 1. Power for the typical non-critical loads that can be turned off during an accident
- 2. Steering and braking always are on
- 3. Can bus and communication always are on

YK (Yeon Kyu) Choi

ychoi@vicorpower.com

YK is the Automotive Sr. Field Application Engineer, helping power engineers architect new automotive power delivery systems. He has a MSc in Power Electronics from Konkuk University.

Thank you