

APRIL 18-20, 2023

TM

Advance to the Next Level of Mobility

As the mobility environment becomes more complex and time-tomarket pressures rise, there's only one place you can access the latest trends, professional development, and knowledgeable contacts you need to overcome today's mobility challenges and those yet to arrive: 2022 WCX™ SAE World Congress Experience.

Managing high voltage line ripple rejection using high bandwidth DC-DC

APRIL 18-20, 2023

R Haris Muhedinovic, Principal Application Engineer, Vicor

Ranya Badawi, Power Converter Engineer, GM

Co-author: Steven Wybo, GM

Electric vehicle HV bus overview and inverter ripple

- High voltage ripple occurs on high voltage bus during propulsion and regeneration as a result of inverter's (PIM) operation.
- Most of the ripple is filtered by inverter's bulk capacitor but significant part is injected to HV bus and can cause issues for other power converters.

Impact of inverter ripple on APM (Accessory Power Module)

- Component Degradation:
 - APM input filter capacitors are exposed to both APM switching current and inverter ripple
 - Self-heating caused by $(I_{rms}^2 R_{ESR})$ leads to component degradation
- Ripple Transfer to APM Output
 - APM closed-loop bandwidth limited to a few kHz
 - Inverter ripple frequency not rejected by control loop
 - Ripple not filtered by Input filter. Attenuated by transformer
- Audio Noise / Mechanical Resonance
- Component Damage (overvoltage) due to filter gain near resonance
 - Semiconductor devices must block (withstand) both HVDC voltage AND ripple voltage superimposed onto HVDC bus
 - Sufficient Voltage Breakdown Margin required
- Filter resonances excited by inverter ripple will cause damage (over voltage and current)

Resonances: HVPM HVDC filters

- HVDC filters are designed to address EMI noise and not inverter ripple.
- If designed without taking inverter ripple into consideration, the filter can inadvertently be excited by inverter ripple

Circuit Model of a 4-pole APM EMI filter

Ripple rejection - example

HV Ripple: Frequency = 2kHz Magnitude = 19Vp-p Converter Voltage Ripple Magnitude: 0.7 Vp-p

HV Ripple: Frequency = 4kHz Magnitude = 20Vp-p Converter Voltage Ripple Magnitude: 1.14 Vp-p

HV Ripple: Frequency = 10kHz Magnitude = 23Vp-p Converter Voltage Ripple Magnitude: 1.7 Vp-p

- Minimize Inverter Ripple on HV Bus:
 - Modify Drive Profiles
 - Increase DC Link Capacitance
 - Implement "No-fly" Zones to avoid exciting component resonances
- Design Converters which operate significantly higher above potential oscillations (ripple) on HV bus. The advantages are:
 - DCDC converter at high switching frequency able to reject line ripple
 - Higher resonance for input filter means smaller filter size

- Increased power density
- Minimized voltage and current ripple
- Minimized EMI filtering effort
- Closed loop control bandwidth extended

- 1. Select the cut-off frequency below the crossover frequency of the converter
- 2. Choose the inductor L based on maximum input current, calculate C based on equation or determine C based on voltage level and calculate L
- 3. Select appropriate filter network and calculate component values based on equations
 - Assume peak output impedance of the filter to be at least 10 times lower than input impedance of converter
 - For 500V input and 2.5kW converter Zin=100 Ohm

Apply these steps for two different DC-DC converters with 5kHz and 25kHz filter cut-off

Filter comparison

Filter comparison- applying ripple voltage on HV input bus

Filter output impedance

- In order to keep filter losses lower, output impedance of the high cut-off filter should be below output impedance of the low cut-off, until frequency of interest
- Lower impedance lower losses, break even point 16kHz

Size comparison - for filters with equal power losses

L1= 20 x L10 C4= 50 x C17

To keep losses equal and distributed

ONLY EXAMPLE

- Undamped filter
 - Risk of uncontrolled voltage amplification
 - Avoid inverter switching frequency
- Simplifed damped
 - Weak attenuation at higher frequencies
- Series or parallel damped
 - Dissipate energy in damping circuit
 - Attenuate noise

Series damped might be more attractive due to lower current at high voltage level.

Relative size ratio will remain the same.

Vicor's DC-DC converter under HV ripple – time domain

V_{IN}=700+20*sin(2*pi*2k*t)

Vicor's DC-DC converter under HV ripple – time domain

V_{IN}=700+20*sin(2*pi*10k*t)

Vicor's DC-DC converter under HV ripple – time domain

Vin=700+20*sin(2*pi*17k*t)

Vicor's DC-DC converter under HV ripple – frequency response

Conclusion

Vicor DC-DC converter enables:

- Highest power density conversion
- Smallest EMI filter (high switching frequency and ZVS/ZCS topology)
 - Shifting frequency range
- Reliable system and simplified architecture
- High frequency enable higher closed loop bandwidth and rejects inverter ripple noise

Thank you Ranya Badawi General Motors Warren, MI +1 248-296-0147 ranya.badawi@gm.com Thank you Steven Wybo General Motors Warren, MI +1 248-410-3356 steven.wybo@gm.com Haris Muhedinovic Principal Application Engineer hmuhedinovic@vicr.com +49 171 5647279