MIL ChiP DCM2322 (30Vin-28Vout) EMI Test Report

Input Voltage Range : 9-50V, 30V (Nominal Line)
Output Voltage : 28V (Nominal)
EMI Filtering : CE101, CE102

Summary:

<table>
<thead>
<tr>
<th>Input Voltage</th>
<th>EMI Filter</th>
<th>Output Capacitor (COUT-EXT) Min, Max Cap</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 V</td>
<td>Two Stage</td>
<td>220uF, 2200uF</td>
<td>PASS</td>
</tr>
<tr>
<td>30 V</td>
<td>Two Stage</td>
<td>220uF, 2200uF</td>
<td>PASS</td>
</tr>
<tr>
<td>50 V</td>
<td>Two Stage</td>
<td>220uF, 2200uF</td>
<td>PASS</td>
</tr>
</tbody>
</table>

Prepared by:
Vamshi Domudala
Applications Engineering
Date: 1/22/2020
Model Details:

ChiP DCM: DCM2322T50T3160T60

EMI tests performed as per MIL-STD-461:

CE101
CE102
<table>
<thead>
<tr>
<th>REFERENCE DESIGNATOR</th>
<th>DESCRIPTION</th>
<th>MFG PART NUMBER</th>
<th>MANUFACTURER</th>
<th>QUANTITY</th>
<th>VALUE NOM</th>
<th>RATING NOM</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>Capacitor</td>
<td>UPW1J222MHD</td>
<td>Nichicon</td>
<td>1</td>
<td>2200uF</td>
<td>63V</td>
</tr>
<tr>
<td>C45-48</td>
<td>Capacitor</td>
<td>C1812C103KGRACTU</td>
<td>KEMET Corporation</td>
<td>4</td>
<td>10000pF</td>
<td>2000V</td>
</tr>
<tr>
<td>C18-21, C38-40, C42, C43, C44</td>
<td>Capacitor</td>
<td>GA355DR7GF472KW01L</td>
<td>Murata Manufacturing</td>
<td>10</td>
<td>4700pF</td>
<td>250V</td>
</tr>
<tr>
<td>C41</td>
<td>Capacitor</td>
<td>C5750X7T2E225M250KA</td>
<td>TDK</td>
<td>1</td>
<td>2.2uF</td>
<td>250V</td>
</tr>
<tr>
<td>C2-C17, C22-C37</td>
<td>Capacitor</td>
<td>GRM32EC72A106KE05L</td>
<td>Murata Manufacturing</td>
<td>32</td>
<td>10uF</td>
<td>100V</td>
</tr>
<tr>
<td>COUT_EXT1</td>
<td>Min/Max from the ChiP DCM datasheet</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L1, L2</td>
<td>Ind Com Mode 7065</td>
<td>49390-221</td>
<td>Vicor</td>
<td>2</td>
<td>220uH</td>
<td>10.5A</td>
</tr>
<tr>
<td>PS1</td>
<td>DCM2322 9 - 50Vin</td>
<td>DCM2322</td>
<td>Vicor</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R1, R2</td>
<td>Resistor</td>
<td>ERJ-1TRSJR15U</td>
<td>Panasonic</td>
<td>2</td>
<td>0.15Ω</td>
<td></td>
</tr>
<tr>
<td>R3, R4</td>
<td>Resistor</td>
<td>RC1206FR-101RL</td>
<td>Yageo</td>
<td>2</td>
<td>1Ω</td>
<td></td>
</tr>
</tbody>
</table>
Test setup details:

EMI Filter

A 50Ω termination is used for LISN and voltage across the RED and BLACK leads are measured at various load conditions.

LISN Part Number:
Solar Electronics Company
TYPE 8028-50-BP-24-BNC

Clamp-On Current Probe
Extech /380947
Serial # 00004085

EMI Receiver:
Rohde & Schwarz
Model #
ESIB7.1088.7490.07
Serial # M002397

Pasternack
20dB Attenuator

Electronic Load
Kikusui
PLZ1003WH
3504
EMI Base Scan with a 15Ω resistive load:

Note that there is a low frequency noise in the range of 10 - 15 kHz is present in the EMI screen room. For a base line of the low frequency noise, shown in the below EMI scan, the power supplies is loaded with 15Ω resistive load.

Low frequency noise can be observed in all the CE102 scans, please note that the DUT under test (DCM) is not the source of the low frequency noise.
CE101 Test Results: RED LEAD

Figure 1: Vin 9V, Vout 28V, Load 0%, Cout 220uF

Figure 2: Vin 9V, Vout 28V, Load 100%, Cout 220uF

Figure 3: Vin 9V, Vout 28V, Load 10%, Cout 2200uF

Figure 4: Vin 9V, Vout 28V, Load 100%, Cout 2200uF
CE101 Test Results: BLACK LEAD

Figure 13: Vin 9V, Vout 28V, Load 0%, Cout 220uF

Figure 14: Vin 9V, Vout 28V, Load 100%, Cout 220uF

Figure 15: Vin 9V, Vout 28V, Load 10%, Cout 2200uF

Figure 16: Vin 9V, Vout 28V, Load 100%, Cout 2200uF
Figure 21: Vin 50V, Vout 28V, Load 0%, Cout 220uF

Figure 22: Vin 50V, Vout 28V, Load 100%, Cout 220uF

Figure 23: Vin 50V, Vout 28V, Load 10%, Cout 2200uF

Figure 24: Vin 50V, Vout 28V, Load 100%, Cout 2200uF
CE102 Test Results: RED LEAD

Figure 3: Vin 9V, Vout 28V, Load 0%, Cout 220uF

Figure 4: Vin 9V, Vout 28V, Load 100%, Cout 220uF
Figure 5: Vin 30V, Vout 28V, Load 0%, Cout 220uF

Figure 6: Vin 30V, Vout 28V, Load 100%, Cout 220uF

Figure 7: Vin 30V, Vout 28V, Load 0%, Cout 2200uF

Figure 8: Vin 30V, Vout 28V, Load 100%, Cout 2200uF
Figure 9: Vin 50V, Vout 28V, Load 0%, Cout 220uF

Figure 10: Vin 50V, Vout 28V, Load 100%, Cout 220uF

Figure 11: Vin 50V, Vout 28V, Load 0%, Cout 2200uF

Figure 12: Vin 50V, Vout 28V, Load 100%, Cout 2200uF
CE102 Test Results: BLACK LEAD

Figure 13: Vin 9V, Vout 28V, Load 0%, Cout 220uF

Figure 14: Vin 9V, Vout 28V, Load 100%, Cout 220uF

Figure 15: Vin 9V, Vout 28V, Load 0%, Cout 2200uF

Figure 16: Vin 9V, Vout 28V, Load 100%, Cout 2200uF
Figure 17: Vin 30V, Vout 28V, Load 0%, Cout 220uF

Figure 18: Vin 30V, Vout 28V, Load 100%, Cout 220uF

Figure 19: Vin 30V, Vout 28V, Load 0%, Cout 2200uF

Figure 20: Vin 30V, Vout 28V, Load 100%, Cout 2200uF
Figure 21: Vin 50V, Vout 28V, Load 0%, Cout 220uF

Figure 22: Vin 50V, Vout 28V, Load 100%, Cout 220uF

Figure 23: Vin 50V, Vout 28V, Load 0%, Cout 2200uF

Figure 24: Vin 50V, Vout 28V, Load 100%, Cout 2200uF