
PI3749-x0-EVAL1 ZVS Regulators Buck-Boost Evaluation Board

Contents	Page
Introduction	1
Bill of Materials	2
Typical Connections	4
Vicor PCB Edge Connector Description	<u>1 5</u>
PAD Numbering	5
Schematic Symbol	6
PAD Definitions	6
PCB Design Files	7

Introduction

The PI3749-x0-EVAL1 evaluation board demonstrates the features and benefits of the Vicor ZVS Buck-Boost regulator; pre-configured for a $24V_{OUT}$ voltage and rated for over 160W of output power up to 60°C and up to 120W at 85°C. Please refer to the corresponding PI3749-x0 data sheet for all power specifications. The PI3749-x0-Eval1 evaluation board is used with the following ZVS buck-boost products: PI3749-00, PI3749-20.

The evaluation board provides several options for applying input power (VIN and GND) and output load (VOUT and GND). The user can solder tab-style banana jacks or wire, use threaded connectors with retaining nuts or solder turret pins for clip-on connections.

The evaluation board comes with all of the PI3749-x0's features accessible to the user. The current-monitor function (IMON) is set-up to monitor the PI3749-x0's output current, sensed across a $5m\Omega$ resistor. The general purpose amplifier (VDIFF) comes pre-set with a gain of 2, but can be easily reconfigured for differential measurements by adding extra 0603 resistors.

The I/O pins are brought out to the right edge of the evaluation board to allow for easy monitoring or for adding additional circuitry. The status of the PGD pin is indicated by a dual colored LED; red indicating a fault and green indicating no faults. The SYNCO (sync out) and SYNCI (sync in) pins are accessible to allow for paralleling or for synchronizing to an external clock. Shorting J5 on the board will connect the output of IMON to the positive input of the GP amplifier, allowing for user-designed signal scaling and conditioning.

A footprint for an external soft-start capacitor (0603) is available to tailor the start-up profile of the converter. The error amplifier's output (EAO) is brought to a pin and in conjunction with the soft-start pin can be used for paralleling converters. The error amplifier's input (EAIN) is not directly connected to a pin, but connects to the pin EXT_VREF via a $10k\Omega$ series resistor. Appling a DC voltage to this pin will allow the user to change the regulated output voltage without changing the feedback network.

The board is designed with an edge connector to facilitate testing at the factory, but this connection can also be used for board evaluation. The PCB is 4-layer FR-4 170Tg material with 2oz copper per layer, ENIG pad finish and a board thickness of 0.062in.

The board includes an I^2C^{TM} header for use with I^2C -capable products like the Pl3729-20. Note that the I^2C interface is inhibited by default by 0Ω resistors installed at RSDA and RSCL (refer to Table 1 Bill of materials). These must be removed to enable I^2C functionality.

Bill of Materials

Table 1 *Bill of materials populated components*

Qty	Reference Designator	Value	Description	Manufacturer	Manufacturer Part Number
14	C1, C2, C3, C4, C5, C7, C8, C9, C10, C11, C12, C13, C14, CIN1	10μF	Ceramic Cap, X5R, 50V, 1206	TDK	C3216X5R1H106K160AB
1	C6	0.1µF	Ceramic Cap, X7R, 50V, 1206	Murata	GRM319R71H104KA01D
1	CCOMP	4.7nF	Ceramic Cap, X7R, 50V, 0603	Murata	GRM188R71H472KA01D
1	CVDR	0.1µF	Ceramic Cap, X7S, 100V, 0603	TDK	CGA3E3X7S2A104K080AB
1	D1	Fault Status	1 x 1mm Dual Color SM LED	Rohm	SML-P24MUWT86
2	FT1, FT2	TEST 1, TEST 2	SM Testpoint	Keystone	5015
2	J5, J6		0.1in Header Jumper	Samtec	TSW-148-07-F-S
1	L1	65nH	FP0404 Series Inductor	Eaton	FP0404R1-R065-R
1	LMAG	480nH	HCV1206 Inductor	Eaton	HCV1206-R48-R
1	PCB		PI3749-x0 Edge Connector Eval Board	VICOR	PCB0175rC
1	PI3749	ZVS Buck-Boost, I ² C™ capable	Low-Voltage ZVS B-B SIP 10 x 14mm	VICOR	PI3749-20-LGIZ
1	R5	1.00kΩ	Resistor, 1%, 0.1W, 0603	Rohm	MCR03EZPFX1001
5	RDIFF1, RDIFF2, REA3, RPGD, RSYNCI	10.0kΩ	Resistor, 1%, 0.1W, 0603	Rohm	MCR03EZPFX1002
1	REA1	14.0kΩ	Resistor, 1%, 0.1W, 0603	Yageo	RC0603FR-0714KL
1	REA4	1.07kΩ	Resistor, 1%, 0.1W, 0603	Yageo	RC0603FR-071K07L
1	RGP	49.9Ω	Resistor, 1%, 0.1W, 0603	Rohm	MCR03ERTF49R9
1	RIN	1Ω	Resistor, 1%, 0.25W, 1206	Rohm	MCR18ERTFL1R00
1	RSENSE	0.005Ω	Resistor, 1%, 1W, 2512	Panasonic	ERJ-M1WSF5M0U
3	RSDA, RSCL, RZ1	0Ω	Resistor, 1%, 0.1W, 0603	Rohm	MCR03EZPJ000
1	U1	NC7WZ14EP6X	Dual Schmidt trigger Inverter	Fairchild	NC7WZ14EP6X

Non-Populated Components

Table 2 Non-populated components

Qty	Reference Designator	Description
3	REA2, RIMON, RZ2	Resistor, 1%, 0.1W, 0603
4	R1, R2, R3, R4	Factory Use Only
14	EAO, EXT_VREF, PGD, IMON, SGND1, SGND2, SS/TRK, SYNCI, SYNCO, VDIFF, VDR, VIN, VSN, VSP	Thru-hole Testpoints, Vector K24C
3	CEAIN1, CEAO, CTRK	Ceramic Cap, 50V, 0603
1	CIN2	Bi-Polar Capacitor, Nichicon UPW2A330MPD or equivalent
2	JVIN, JVOUT	Johnson Jack, Tektronix 131503100
3	ENABLE, FT3, FT4	SM Test Point, Keystone 5015
1	JGP	0.1in Header Jumper

Figure 1
Evaluation board schematic

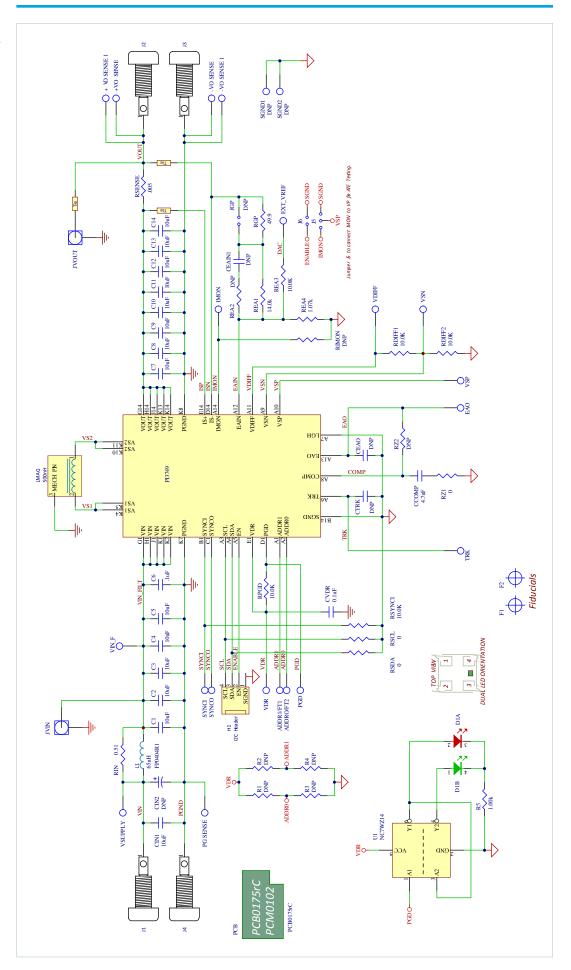
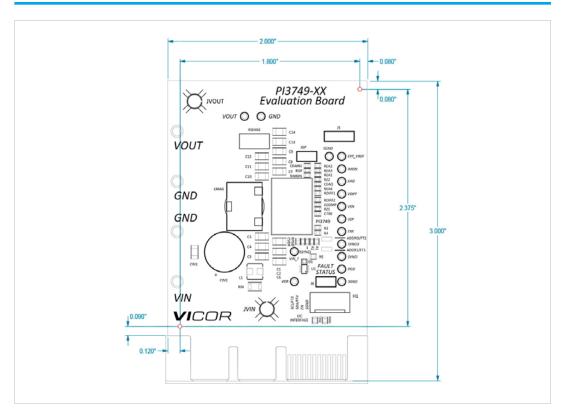
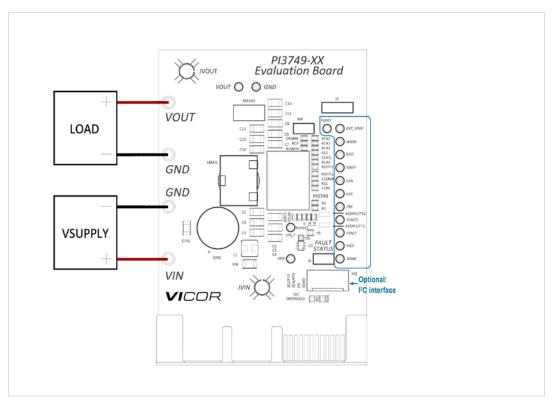



Figure 2
Evaluation board details

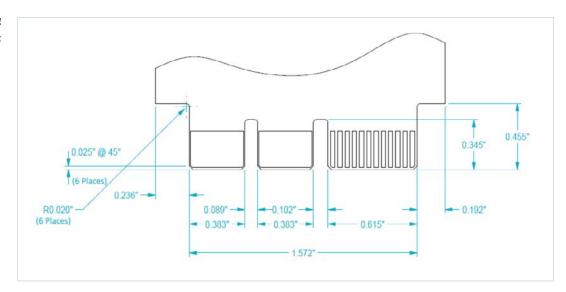


Typical Connections

Figure 3 illustrates the typical input supply and output load connections required to power the PI3749-x0 evaluation board. The test points on the right side of the board provide access to key nodes used to assess the board's performance. The jumper "JGP" provides an access point that allows the user to add a small signal in the feedback loop to make Gain/Phase measurements. The jumper J5 will connect the IMON output signal to the positive input of the general purpose amplifier, allowing this signal to be scaled. The J6 jumper will disable the converter when connected.

H1 provides optional access to the I^2C interface, and includes SDA, SCL, EN and SGND JVIN is an unpopulated "Johnson Jack" location that may be used to measure input ripple voltage.

Figure 3
Typical input and output connections



Vicor PCB Edge Connector Description

SAMTEC Reference Mechanical Drawings: based on EXTreme LPHPower™ Socket Assembly series, available from Samtec's website PCB Dimensions:

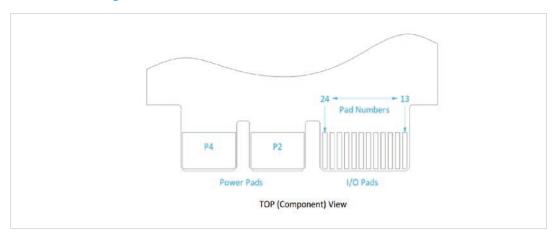
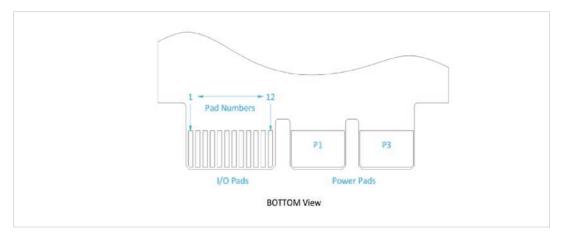
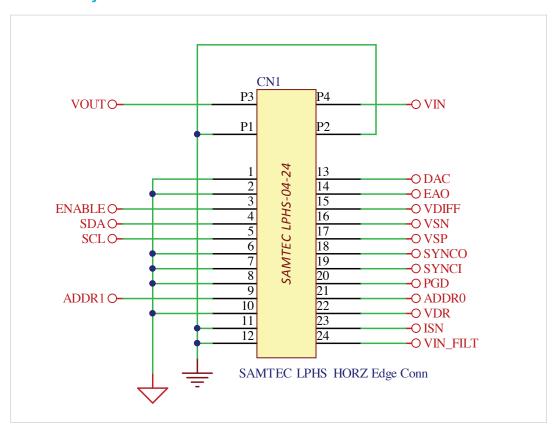

- Recommended PCB layout for LPHS-XX-XX-X-VXX-XX PCB Layout.pdf
- Right-angle Socket: LPHS-XX-XX-X-RTX-XX-MKT.pdf
- Vertical Socket: LPHS-XX-XX-X-VXX-XX-MKT.pdf

Figure 4 Edge connector details



PAD Numbering

Figure 5
Top (component) view


Figure 6Bottom view

Schematic Symbol

Figure 7 Schematic of edge connector

PAD Definitions

Table 3 PAD Definitions

PAD	Name	Descirption
P1, P2	PGND	Power ground connection for the input supply and output load
Р3	VOUT	Output voltage connection
P4	VIN	Input voltage connection
1, 2, 6, 7, 8, 10	SGND	Signal ground used as reference for I/O measurements
11, 12	PGND	Power ground used as reference for input and output voltage measurements
3	ENABLE	Enable
4	SDA	I ² C™ Serial Data
5	SCL	I ² C Serial Clock
9	ADR1	I ² C Address <1>
13	DAC	External voltage node to adjust regulated output voltage (EXT_VREF)
14	EAO	Error amplifier output
15	VDIFF	Differential amplifier output
16	VSN	Differential amplifier inverting input
17	VPN	Differential amplifier non-inverting input
18	SYNCO	Sync output pin
19	SYNCI	Sync input pin
20	PGD	Power good status pin
21	ADR0	I ² C Address <0>
22	VDR	Factory use only
23	ISN	Remote-sensed output voltage, after the IMON resistor
24	VIN	Input supply voltage measured at SiP's input

End of Life

PCB Design Files

ODB++ evaluation board design files are available for download on the Vicor website.

Table 4Design files

Product	Deisgn File Format	Link to Download
PI3749-x0-EVAL1	ODB++	PI3749-xx Eval ODB++.zip

End of Life

Limitation of Warranties

Information in this document is believed to be accurate and reliable. HOWEVER, THIS INFORMATION IS PROVIDED "AS IS" AND WITHOUT ANY WARRANTIES, EXPRESSED OR IMPLIED, AS TO THE ACCURACY OR COMPLETENESS OF SUCH INFORMATION. VICOR SHALL HAVE NO LIABILITY FOR THE CONSEQUENCES OF USE OF SUCH INFORMATION. IN NO EVENT SHALL VICOR BE LIABLE FOR ANY INDIRECT, INCIDENTAL, PUNITIVE, SPECIAL OR CONSEQUENTIAL DAMAGES (INCLUDING, WITHOUT LIMITATION, LOST PROFITS OR SAVINGS, BUSINESS INTERRUPTION, COSTS RELATED TO THE REMOVAL OR REPLACEMENT OF ANY PRODUCTS OR REWORK CHARGES).

Vicor reserves the right to make changes to information published in this document, at any time and without notice. You should verify that this document and information is current. This document supersedes and replaces all prior versions of this publication.

All guidance and content herein are for illustrative purposes only. Vicor makes no representation or warranty that the products and/or services described herein will be suitable for the specified use without further testing or modification. You are responsible for the design and operation of your applications and products using Vicor products, and Vicor accepts no liability for any assistance with applications or customer product design. It is your sole responsibility to determine whether the Vicor product is suitable and fit for your applications and products, and to implement adequate design, testing and operating safeguards for your planned application(s) and use(s).

VICOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED OR WARRANTED FOR USE IN LIFE SUPPORT, LIFE-CRITICAL OR SAFETY-CRITICAL SYSTEMS OR EQUIPMENT. VICOR PRODUCTS ARE NOT CERTIFIED TO MEET ISO 13485 FOR USE IN MEDICAL EQUIPMENT NOR ISO/TS16949 FOR USE IN AUTOMOTIVE APPLICATIONS OR OTHER SIMILAR MEDICAL AND AUTOMOTIVE STANDARDS. VICOR DISCLAIMS ANY AND ALL LIABILITY FOR INCLUSION AND/OR USE OF VICOR PRODUCTS IN SUCH EQUIPMENT OR APPLICATIONS AND THEREFORE SUCH INCLUSION AND/OR USE IS AT YOUR OWN RISK.

Terms of Sale

The purchase and sale of Vicor products is subject to the Vicor Corporation Terms and Conditions of Sale which are available at: (http://www.vicorpower.com/termsconditionswarranty)

Export Control

This document as well as the item(s) described herein may be subject to export control regulations. Export may require a prior authorization from U.S. export authorities.

Contact Us: http://www.vicorpower.com/contact-us

Vicor Corporation

25 Frontage Road Andover, MA, USA 01810 Tel: 800-735-6200 Fax: 978-475-6715 www.vicorpower.com

email

Customer Service: custserv@vicorpower.com
Technical Support: apps@vicorpower.com

©2018 – 2019 Vicor Corporation. All rights reserved. The Vicor name is a registered trademark of Vicor Corporation.

I²CTM is a trademark of NXP Semiconductor.

EXTreme LPHPowerTM is a trademark of Samtec, Inc.

All other trademarks, product names, logos and brands are property of their respective owners.