双向桥接转换器解决 12V 转 48V DC 电源转换难题
过渡至 48V 电源分配系统比重新设计传统的 12V 设计更具优势
The Vicor webinar Enabling Bi-Directional Energy Flow Using DC Power Transformers shows how Vicor power components allow voltages to be stepped up or down, based on the direction of energy flow.
The webinar pays particular attention to the Bus Converter Modules (BCMs) and Non-Isolated Bus Converter Modules (NBMs), families of fixed-ratio converters that step up and down voltages with a fixed ratio, operating as if they were a DC transformer.
One of the main topics was scalability: engineers wanted to know more about delivering higher power levels and larger voltages. Here is a collection of the best questions on these topics, along with presenter Harry Vig’s answers.
High power arrays can be created using the bus converters in parallel provided that care is taken in designing the input and output connections. BCM modules share inherently with inputs and outputs connected in parallel, with the positive temperature coefficient of ROUT reinforcing sharing. Assuming equal cooling, an array can operate at full power with accurate sharing and no de-rating. The array should be designed based on guidelines that optimize protection, efficiency, reliability, and minimize noise. For more information, check out our Application Note on using BCMs in High Power Arrays.
Redundancy and shutting down for protection are the parts of the design I think are most difficult. One of the potential problems is if one module shuts down, and maybe a second one shuts down, the load is transferred to the other modules. This could result in a cascade failure. The most intelligent way to deal with this problem would be to use a microprocessor or other control circuitry.
But if you need the output from ten modules in parallel, it would be a good idea to have 12, 14 or even 15 modules in parallel. That’s because with additional components, the loading on each module will decrease, and with that its operating temperature will decrease as well. When operating at lower temperature, they’re going to have a better lifetime. Additionally, you will have built-in redundancy: if one of them does turn off for some reason, you’ve still got the required capacity so you won’t have to shut them all down.
Other customers take this approach if they need to conduct regular maintenance and take one module out of service for testing, especially if the system has a long lifetime and you’re in a battery environment: you may well want to inspect the modules for corrosion due to battery fumes.
At the time this was written, VIcor had a 400V version of the BCM, which is adequate for most applications. See the Vicor BCM family page to see the specification of our latest products.
Related content
Webinar: Enabling bi-directional energy flow using DC power transformers
Application note: Using BCM® bus convertersin high power arrays
双向桥接转换器解决 12V 转 48V DC 电源转换难题
过渡至 48V 电源分配系统比重新设计传统的 12V 设计更具优势
助力地球上最大的光学望远镜观测浩瀚宇宙
Microgate 开发了自适应光学技术,帮助人们更清晰地观测深空。了解 Vicor 电源模块如何支持他们的任务
电源模块加速汽车从 800V 到 48V SELV 的转变之路
Vicor BCM6135 为主动悬挂系统解决了历史性的电源设计问题。双向并快速瞬变的 DC-DC 转换器对全新的设计至关重要
数据中心电力分解
Vicor BCM6135 为主动悬挂系统解决了历史性的电源设计问题。双向和快速瞬变 DC-DC 转换器对全新的设计至关重要